Random Forests

Joe Nese
Week 8, Class 1

Agenda

e Random forests
e {workflows}

e extract

Random Forests

Trees and Bagging

* Single trees do not have great predictive accuracy
» deep trees: high variance, low bias
* shallow trees: high bias, low variance

* Bagging trees introduces a random component by building many trees
on bootstrapped copies of the training data

* Bagged trees help reduce the variance compared to a single, deep tree

* Bagging aggregates the predictions across all the trees

* this reduces the variance of the overall procedure and results in improved
predictive performance

e but results in tree correlation that limits the effect of variance reduction

Bagging — tree correlation

* Trees in a bag are not completely independent since all features are
considered at every split of every tree

* tree correlation: trees from different bootstrap samples generally have

similar structure to each other (especially at the top of the tree) due to any
underlying strong relations

* prevents bagging from further reducing the variance of the base learner

Limited variance reduction

e Suppose there is one very strong predictor in your data, along with
other moderately strong predictors

* In a bagged tree, most/all of the trees will use the strong predictor in
the top split
* all trees are quite similar

* Then predictions from the bagged trees will be highly correlated

* Averaging many highly correlated quantities does not lead to as large
of a reduction in variance as averaging many uncorrelated quantities

* This means that bagging will not lead to a substantial reduction in
variance over a single tree (in this scenario)

Kuhn & Johnson (2013)

NumCarbon==3.41

SurfacefArea2«< 0.978
Surfacefreal< 0.978

(a) Sample 1

MumCarbons==3.41

Surfacabrea?= 0978
MolWeight==5.32

{c) Sample 3

MumCarpon==3.78

SurfaceArea2< 0.978
MolWeight==4 53

{e) Sample b

NumCarbon==3.78

Surfacefrea2< 5.61
MolWeighl==4. 53

(b} Samplc 2

MNumCarbon==3.78

Surfacafdreal< 0 978
SurfaceArsal< 3 46

{c) Sample 4

NumCarbon=>=3.78

Surfacefreal=0.978
MolWeight==5.22

(f) Sample 6

Bagged Tree

e Each tree varies in structure, so
predictions vary by tree

* But the first splits are all very similar

* Second-level splits are a bit different,
but not much

 Sono treeis exactly the same, but
they are similar and clearly correlated

* So the solution is to de-correlate the
trees

Random Forest

A random forest can reduce this variance

* each tree is (more) different, and collectively their decisions will be more
accurate

* reduces tree correlation

* Sum is greater than its parts

e

Credit to Allison Hill for this analogy

Random Forest

* Bagging trees introduces a random component by building many trees
on bootstrapped copies of the training data

 Random forests introduce another source of randomness that helps
reduce tree correlation: split-variable randomization

* Each time a split is to be performed while growing a decision tree, the search for
the split variable is limited to a random subset of the original p features (mtry)

* Everything else about random forests works just as it did with bagging

Random Forest

 Random Forest randomly selects a bootstrap sample to train on and a
random sample of features to use at each split
* a more diverse set of trees
* less tree correlation (compared to bagged trees)
* more predictive power
 faster than bagging (smaller feature search space at each tree split)

e Each tree in the ensemble is used to generate a prediction for a new
sample, and these predictions are aggregated to give the forest’s
prediction

* Thus, Random Forests introduce two types of random variation
* the bootstrapped sample
* the mt ry randomly selected predictors

Random Forest

e A subset of mt ry of the p features in the data is selected at random
* Only these mt rvy features are considered for the partition at the node

* Random selection of features reduces the similarity of trees grown from
different bootstrap samples—even two trees grown from the same
bootstrap sample will likely differ

e At each splitin the tree, you’re not even using a majority of the available
predictors. Why?

* Suppose there is one very strong predictor in your data, along with other moderately
strong predictors

* On average (p—mtry?/p of the splits won’t even consider the strong predictor, so
other predictors will have more of a chance to appear at the root

* This is “decorrelating” the trees
* Which makes the average of the resulting trees more reliable

The root notes from a bagged tree with 1,000 trees (10 folds x 10 hyperparameters x 10 bootstrapped resamples)

:
;

sp_ed_fg_Y

enrl_grd

Feature at Root Node of Bagged Trees

tag_ed_fg_Y

count

The root notes from a random forest with 1,0000 trees total (no resampling outside the forest, no tuning)

econ_dsvntg_ Y
enrl_grd
sp_ed To_Y
tag_ed fg_Y
ayp_lep_Y
p_white
ethnic_cd H
_ p_asian
p_hispanic_latino
ayp_lep E
ayp_le{a_un'known
LSchi g Y

rp_rpt_sc m
PP dist:gped_‘r'
rc_schl_prfrm_Y
p_multiracial
ayp_schl_prfrm_Y
p_native_hawaiian_pacific_islander
grp_rpt_schl_partic_Y
Tang_cd_unknown
rc_schi_partic_Y
ayp_schl_partic_Y
p_black_african_american
ayp_lep_N
Tat
. lon
ethnic_cd_B
gndr_M
tst_atmpt_fg_Y
ayp_dist_partic_Y
ayp_lep_X
econ_dsvntg_unknown
_ grp_rpt_dist prfrm_Y
p_american_indian_alaska_native
stay_in_schLY
tst_dt

Feature at Root Nodes of Random Forest

0 25 50 75 100 125
count

Random Forest algorithm

. Given a training data set
. Select number of trees to build (trees)
. fori=1to trees do
| Generate a bootstrap sample of the original data

1
2
3
4
5. | Grow a regression/classification tree to the bootstrapped data
6. | for each split do

7. | | Select mtry variables at random from all p features

8. | | Pick the best variable/split-point among the mtry

9

| | Split the node into two child nodes

10. | end
11. | Use typical tree model stopping criteriamin n to determine when a tree is complete (but do not prune)
12. end

13. Output ensemble of trees

HML (Boehmke); Max & Johnson (2013)

https://bradleyboehmke.github.io/HOML/random-forest.html

parsnip
>

rand forest ()

* set engine ()
* {ranger} —default
* {randomForest}

* set mode ()
* “regression”
e “classification”

 default split method
* regression = SSE
* classification = Gini index

15

Random Forest

* Tend to provide very good performance out-of-the-box
» default values of tuning parameters tend to produce good result

* when tuning, have the least variability in prediction accuracy among machine
learning algorithms (Probst, Bischl, & Boulesteix, 2018)

parsnip

tuning parameters

rand forest (mtry = NULL, trees = NULL, min n = NULL)

* mtrv: number of predictors that will be randomly sampled at each split
when creating the tree models

e trees: number of trees contained in the ensemble

*min n:minimum number of data points in a node that are required for
the node to be split further

mtry

* for data with fewer relevant predictors (e.g., noisy data) a higher mtrvy
value tends to perform better because it is more likely to select those
relevant features

 for data with more relevant predictors, a lower mt ryv may be better
 fora large number of correlated predictors, a lower mt rv may be better

e defaults
* mtry =p/3 (regression) reiman, 2001)
 mtry = Vp (classification)
e mtry = p = bagged decision trees (this is what Daniel did last class)

* Suggestion: start with five evenly spaced values of mt ry across the
range 2—p centered at the recommended default soenmie, 2020; max & sonnson, 2013)

CLrees

 Random forests are protected from overfitting so are not negatively
affected by a large number of trees @rieman, 2001

* trees needs to be sufficiently large to stabilize the error rate

* more trees provide more robust and stable error estimates and variable importance
measures

* but increases computation time (linearly)

e default
* trees =500

* Suggestions

e use at least 1,000 trees; if CV performance measures are still improving at 1,000
trees then add trees until performance levels (vaxs sohnson, 2013)

e start with px10 trees and adjust as necessary (soehme, 2020)

min_n

¢ dEfa u |tS (Dr'az-Uriarte and De Andres 2006; Goldstein, Polley, and Briggs 2011)
* min n =1 (classification)
*min n =5 (regression)

* for fewer relevant predictors (e.g., noisy data) and higher mtrvy
values, try increasing node size (i.e., decreasing tree depth and
complexity)

* increasing node size will also decrease run time (and perhaps only modestly
increase error estimate)

* Suggestion: start with three values between 1 to 10 and adjust
depending on impact to accuracy and run time (oenmie, 2020

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%
select (-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data",
- "fallmembershipreport 20192020.x1lsx"))

ode schools <- readxl::read xlsx(here::here("data",
"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%

select (attnd schl inst i1id = "Attending School ID,
sch name = "School Name ,
contains ("%")) %>%

Janitor::clean names ()
names (ethnicities) <- gsub ("x2019 20 percent", "p", names(ethnicities))

math <- left join(math, ethnicities)
21

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%
select (-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data",
- "fallmembershipreport 20192020.x1lsx"))

ode schools <- readxl::read xlsx(here::here("data",
"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%

select (attnd schl inst i1id = "Attending School ID,
sch name = "~School Name ,
contains ("%")) %>%

Janitor::clean names ()
names (ethnicities) <- gsub ("x2019 20 percent", "p", names(ethnicities))

math <- left join(math, ethnicities)

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%
select (-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data'",
o "fallmembershipreport 20192020.x1sx"))

ode schools <- readxl::read xlsx(here::here("data",
"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%
select (attnd schl inst id = "Attending School ID’,

sch name = "School Name ,
contains ("%")) %>%

Janitor::clean names ()
names (ethnicities) <- gsub ("x2019 20 percent", "p", names(ethnicities))

math <- left join(math, ethnicities)
23

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%
select (-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data",
- "fallmembershipreport 20192020.x1lsx"))

ode schools <- readxl::read xlsx(here::here("data",
"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%

select (attnd schl inst id = "Attending School ID’,
sch name = "~School Name ,
contains ("%")) %>%

Janitor::clean names ()
names (ethnicities) <- gsub ("x2019 20 percent", "p", names(ethnicities))

math <- left join(math, ethnicities)
24

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%

select (—-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data",
- "fallmembershipreport 20192020.x1lsx"))

ode schools <- readxl::read xlsx(here::here("data",

"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%

select (attnd schl inst i1id = "Attending School ID,
sch name = "~School Name ,
contains ("%")) %>%

Janitor::clean names ()

<- gsub ("x2019 20 percent", "p", names(ethnicities))

names (ethnicities)

math <- left join(math, ethnicities)
25

set.seed (3000)

math <- read csv(here::here("data", "train.csv")) %>%
select (-score) %>%
sample frac(.04)

sheets <- readxl::excel sheets (here::here("data",
- "fallmembershipreport 20192020.x1lsx"))

ode schools <- readxl::read xlsx(here::here("data",
"fallmembershipreport 20192020.x1sx"), sheet = sheets[4])

ethnicities <- ode schools %>%

select (attnd schl inst i1id = "Attending School ID,
sch name = "~School Name ,
contains ("%")) %>%

Janitor::clean names ()
names (ethnicities) <- gsub ("x2019 20 percent", "p", names(ethnicities))

math <- left join(math, ethnicities)
26

Split and Resample

set.seed (3000)
math split <- 1nitilal split(math, strata

set.seed (3000)
math train <- training(math split)

math test <- testing(math split)

set.seed (3000)

math cv <- vfold cv(math train, strata =

= "classification")

"classification")

27

Split and Resample

set.seed (3000)
math split <- 1initial split(math, strata

set.seed (3000)
math train <- trailning(math split)

math test <- testing(math split)

set.seed (3000)
math cv <- vfold cv(math train, strata =

= "classification")

"classification")

28

Split and Resample

set.seed (3000)

math split <- 1initial split(math, strata

set.seed (3000)

math train <- training(math split)

math test <- testing(math split)

set.seed (3000)

math cv <- vfold cv(math train,

strata =

= "classification")

"classification")

29

Recipe

rf rec <- recipe(classification ~ ., math train) %>%
step mutate(tst dt = lubridate::mdy hms(tst dt)) %>%

step mutate(classification = factor(recode (classification,
"1 = "wellbelow",
2 = "below",
"3 = "above",
4° = "wellabove"))) %>%
step rm(contains ("bnch")) 3%>%
update role(contains ("1d"), ncessch, sch name, new role = "id") %>%
step novel (all nominal (), —-all outcomes()) %>%
step unknown(all nominal (), —-all outcomes()) %>%
step medianimpute (all numeric()) %>%
step nzv(all predictors (), freq cut = 0, unique cut = 0) %>%
step dummy(all nominal (), -has role(match = "id"), -all outcomes()) %>%

step nzv(all predictors())

30

prep (rf rec)

31

Default Model

= =

mtry
Lrees

min_n =

floor (sgrt(p))= floor(sgrt(39))= 6
500 (num.trees)
1 (min.node.size)

32

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())
8

33

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

38
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", #argument from {ranger)
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

34

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

38
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", #argument from {ranger)
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

35

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

8
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", #argument from {ranger)
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

36

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

38
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, #argument from {ranger}
importance = "permutation", #argument from {ranger)
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

37

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

8
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", #argument from {ranger}
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

38

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

38
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", fargument from {ranger)
verbose = TRUE) %>% #argument from {ranger}

set mode ("classification")

39

Default Model

mtry = floor(sgrt(p))= floor(sgrt(39))= 6
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())

38
rf def mod <-
rand forest () %>%
set engine ("ranger",
num.threads = cores, +argument from {ranger)
importance = "permutation", #argument from {ranger)
verbose = TRUE) %>% fargument from {ranger)

set mode ("classification")

40

Default Model

rf def mod <-

rand forest () %>%

set engine ("ranger",
num.threads = cores, #argument from {ranger|
importance = "permutation", #fargument from {ranger)
verbose = TRUE) %>% #argument from {ranger)

set mode ("classification")

translate (rf def mod)

Tuned Model

mtry = tune ()
trees = 1000
min n = tune ()

rf tune mod <- rf def mod $>%
set args(
mtry = tune(),
trees = 1000,
min n = tune()

)

42

Tuned Model

mtry = tune ()
trees = 1000
min n = tune ()

rf tune mod <- rf def mod %>%
set args(
mtry = tune(),
trees = 1000,
min n = tune()

)

43

Tuned Model
rf tune mod <- rf def mod %>

set args (
mtry = tune(),
trees = 1000,
min n = tune ()

)

translate (rf tune mod)

3

44

{workflows}

quick detour

7\
fworkflows} ¢ FLOWS
£>/

* Basically a bundle for your parsnip model and recipe

e Advantages
* You don’t have to keep track of separate objects in your workspace
* The recipe prepping and model fitting can be executed using a single call to
fit ()
* If you have custom tuning parameter settings, these can be defined using a
simpler interface when combined with tune

* |In the future, workflows will be able to add post-processing operations, such
as modifying the probability cutoff for two-class models

workflows

e Last week we had code like this:

rec <- recilpe (accuracy group ~ ., data
step mutate (accuracy group =

= tralin) %>%
as.factor (accuracy group))

mod randoml <- decisilion tree() %>%
set mode ("classification") %>%
set engine ("rpart") %>%
set args(cost complexity = 0.01, min n = 5)

mO0l <- fit(mod randoml, accuracy group ~ ., prep(rec) %>%

Juice())

47

workflows

e Last week we had code like this:

rec <- recilpe (accuracy group -~ data =

.y = trailn) %>%
step mutate (accuracy group as.factor (accuracy group))

mod randoml <- decilsion tree ()
set mode ("classification") %>

(@) (@)
5>%

set engine ("rpart") %>%
set args(cost complexity = 0.01, min n = 5)

mO0l <- fit(mod randoml, accuracy group ~ ., prep(rec) %>%

Juice())

48

workflows

e Last week we had code like this:

rec <- recilpe (accuracy group -~ data =

.y = trailn) %>%
step mutate (accuracy group as.factor (accuracy group))

mod randoml <- decisilion tree() %>%
set mode ("classification") %>%

set engine ("rpart") %>%
set args(cost complexity = 0.01, min n = 5)

mO0l <- fit(mod randoml, accuracy group ~ ., prep(rec) 3%>%

Jjuice ())

49

workflows

e Last week we had code like this:

rec <- recilpe (accuracy group ~ ., data
step mutate (accuracy group

= tralin) %>%
as.factor (accuracy group))

(@) (0]
5>%

mod randoml <- decilsion tree(

)
set mode ("classification") %>%
set engine ("rpart") %>%

set args(cost complexity = 0.01, min n = 5)

mO0l <- fit(mod randoml,

e Alternate code is:

randoml wflow <- workflow() %>%
add recipe (rec) %>%
add model (mod randoml)

accuracy group ~ ., prep(rec) %>% Jjuice())

50

4

N\
workflows 0 HIJEVS
N,
 Last week we had code like this: ¥
rec <- recipe (accuracy group ~ ., data = train) %>%

step mutate (accuracy group

as.factor (accuracy group))

mod randoml <- decilsion tree ()
set mode ("classification") %>

(@) O
5>%

set engine ("rpart") %>%
set args(cost complexity = 0.01, min n = 5)

m0l <- fit(mod randoml, accuracy group -~

* Alternate code is:

randoml wflow <- workflow() %>%
add recipe (rec) %>%
add model (mod randoml)

., prep(rec) %>% Jjuice())

mO0l <- fit(randoml wflow, data = train)

51

workflows

You can alter existing workflows using
* update recipe () and/orupdate model ()

* remove recilpe () and/or remove model ()

52

/7 \
workflows FLOWS
\g}/

Other workflows functions

*pull workflow preprocessor ()
* returns either the formula or recipe used for preprocessing

*pull workflow prepped recipe ()
* returns the prepped recipe

*pull workflow spec|()
* returns the {parsnip} model specification

*pull workflow fit ()
e returns the parsnip model fit

Back to our random forests

Workflows

rf def workflow <-
workflow () %>%
add model (rf def mod) %>%
add recipe(rf rec)

rf tune workflow <-
workflow () %>%
add model (rf tune mod) %>%
add recipe(rf rec)

55

Fit Models (without workflows)

set.seed (3000)
rf def res <- fit resamples (
rf def mod,
rf rec,
math cv,
control = control resamples (verbose =
save pred
extract =

TRUE,

function (x)

TRUE,

56

Fit Models (with workflows)

set.seed (3000)
rf def res <- fit resamples (
rf def workflow,
math cv,
control = control resamples (verbose = TRUE,
save pred = TRUE,
extract = function(x) x)

FF1t Default Model

tictoc::tic ()

set.seed (210)

rf def res <- fit resamples (
rf def workflow,

math cv,

control = control resamples (verbose = TRUE,
save pred = TRUE,
extract = function(x) Xx)

)

tictoc::toc ()
66.73 sec elapsed

extract ()

* results in an additional column to be returned called .extracts

e .extractsisalist column that has tibbles containing the results of
the user's function for each tuning parameter combination
* extract model (x) returnsthe model created during resampling
* extract recipe (x) returnsthe recipe created during resampling
* x returns the workflow created during resampling

rf def res

60

rf def res$S.extracts[[1l]]

61

pluck(rf_def_resS.extracts[[1]], 1)

pluck (rf def resS.extracts[[1]], 1)

pluck (rf def resS.extracts[[1]], 1)

rf def res %>%
mutate (oob = map dbl (.extracts,
~pluck (.xS.extracts, 1)SfitfitSfit$Sprediction.error)) %>%

select (1d, oob)

65

o

rf def res %>%
mutate (oob = map dbl(.extracts,
~pluck (.xS.extracts, 1l)SfitsfitsfitSprediction.error)) %>%

select (1d, oob)

A tibble: 10 x 2

id oob
<chr> <dbl>

1 Fold0O1l 0.452
2 Fold02z2 0.450
3 Fold03 0.453
4 Fold04 0.449
5 Fold05 0.453
6 Fold06 0.450
7 FoldO7 0.454
8 Fold08 0.448
9 Fold09 0.454
10 FoldlO 0.449

* Brier score: measures the accuracy of probabilistic predictions; the mean squared difference between the predicted
probability assigned to the possible outcomes, and the actual outcome

66

rf def res %>%
collect metrics (summarize = FALSE)

pluck(rf def res$.extracts[[l]]$.extracts,
pull workflow fit () %>%
vip ()

1)

68

pluck (rf def res$.extracts[[l]]$.extracts, 1) $>%
pull workflow fit() %>%
vip ()

enrl_grd

sp_ed fg_Y

econ_dswntg_Y

tag_ed_fg_Y

ayp_lep_unknown

p_white

p_hispanic_latino

p_asian

ethnic_cd_H

lat

0.000 0.005 0.010 0.015 0.020
Importance

69

rf def res %>%
mutate (vip

map (.extracts,
~pluck (.x$.extracts, 1)
pull workflow fit() %>
vip())) %>%

>%

0
©°
0

©°

select (1d, vip)

A tibble: 10 x 2
1d Vip
<chr> <list>
Fold0Ol <gg>
Fold02 <gg>
Fold03 <gg>
Fold04 <gg>
Fold05 <gg>
FoldO6 <gg>
Fold07 <gg>
Fold08 <gg>
Fold09 <gg>
Foldl0O <gg>

O WO Jo 0wk

o

pluck (rf def resS$S.extracts[[1l]]$.extracts,

1)

71

Fit Tuned Model (without workflows)

set.seed (3000)
rf tune res <- tune grid(
rf tune mod,
rf rec,
math cv,
tune = 20,
control = control resamples(verbose = TRUE,
save pred = TRUE,
extract = function(x) extract model (x))

72

Fit Tuned Model (with workflows)

set.seed (3000)
rf tune res <- tune grid(
rf tune worfklow,
math cv,
tune = 20,
control = control resamples (verbose = TRUE,
save pred = TRUE,
extract = function(x) extract model (x))

73

Fit Tuned Model (with workflows)

set.seed (3000)
rf tune res <- tune grid(
rf tune worfklow,
math cv,
tune = 20,
control = control resamples (verbose = TRUE,
save pred = TRUE,
extract = function(x) extract model (x))

74

Fit Tuned Model (with workflows)

set.seed (3000)
rf tune res <- tune grid(
rf tune worfklow,
math cv,
tune = 20,
control = control resamples (verbose = TRUE,
save pred = TRUE,
extract = function(x) extract model (x))

75

Fit Tuned Model (with workflows)

tictoc::tic ()

set.seed (3000)

rf tune res <- tune grid(
rf tune worfklow,

math cv,
tune = 20,
control = control resamples(verbose = TRUE,
save pred = TRUE,
extract = function(x) extract model (x))

)

tictoc: :toc ()
892.26 sec elapsed (about 15 mins)

compareto 66.73 sec elapsed forthe default settings (no tuning)

rf tune res

77

rf tune res$S.extracts[[1l]]

78

rf tune res$.extracts[[l]]S$.extracts[[1l]]

rf tune res$.extracts[[l]]S$.extracts[[1l]]

vip ()

enrl_grd

acon_dsvntg_Y

tag_ed_fg_Y

sp_ed_fg_ Y

ayp_lep_unknown

p_white

p_hispanic_latino

p_asian

p_multiracial

p_black_african_american

o
=
=]

0.01

Importance

0.02

o\©
o\©

80

o\°
V
o\©

rf tune res$.extracts[[l]]S$.extracts[[1l]]
pull workflow preprocessor ()

81

rf tune res %>%
collect metrics() %>%
arrange (.metric, desc(mean)) %>%
group by (.metric) %>%

rf def res %>%
collect metrics () slice(1:5)

* We improved our predictions (based on two metrics)
e But it took about 15 times as long
 Worth it?

82

Randomly Selected Predictors

rf tune res %>% 0.4¢
autoplot () +

-
0.675

* Could probably increase min n beyond 35
* Maybe lower values of mt ry increased performance (between 0 and 5)?

Minimal Mode Size

0.700
0.695
0.690
0.685
0.680
5 10 15 10 20 30 40

83

Aielnase

ane aal

Create grid and tune model

rf grid reg <- grid regular (
mtry (range = c (1, 15)),

min n(range = c (30, 50)),
levels = c (5, bH)

)

tic ()

set.seed (3000)
rf grid res <- tune grid/(

rf tune workflow,

math cv,

grid = rf grid regq,

control = control resamples (verbose = TRUE,

save pred = TRUE)

)

toc ()
1607.22 sec elapsed (about 27 min)

rf grid res %
autoplot ()
geom line ()

0.460
0.455
0.450

0.445 A

0.7025

0.7000

>%
_F

0.6975 /2/3

0.6950 r

0.6925 y

Randomly Selected Predictors

—_ .
—— T -
e o
gl R - —— e H
e — e —
- ol -
e e
— I
n Pt
-
e
* +
— e
— _.___..-—*'—_ —]
* —= J— —_— L —
!_‘_-n_:__,_._- .
,— —
_— < —
2 3 4 5

Aaeinaae

ane aoJ

Minimal Node Size
—— 40

—+— 45

+— B0

*— 55

85

show best (rf tune res, metric = "accuracy", n = 10) %>% show best (rf grid res, metric = "accuracy", n = 10) $>%
v |l

bind rows (show best (rf tune res, metric = "roc auc", n = 10)) bind rows (show best (rf grid res, metric = "roc auc", n = 10))
$>% $>%

group by (.metric) %>% group by (.metric) %>%

slice(1:5) slice(1:5)

e Worth it?

86

select best (rf tune res, metric = "roc auc") select best(rf grid res, metric = "roc auc")

87

rf best <- select best(rf grid res, metric = "roc auc")

88

rf best <- select best(rf grid res, metric = "roc auc")

rf wf final <- finalize workflow
rf tune workflow,
rf best

)

89

rf best <- select best(rf grid res, metric = "roc auc")

rf wf final <- finalize workflow
rf Tune workflow, o
rf best

)

rf wf final

90

tictoc::tic ()
set.seed (3000)
rf res final <- last fit(rf wf final,
split = math split)

tictoc::toc ()

91

rf res final %>%
pluck (" .workflow", 1)

rf res final %>%
pluck (" .workflow", 1)
pull workflow fit () %>
vip ()

enrl_grd

sp_ed fg Y

econ_dswvntg_Y

tag_ed_fg_Y

ayp_lep_unknown

p_white

p_hispanic_latino

p_asian

ethnic_cd_H

p_american_indian_alaska_native

0.000 0.005 0.010 0.015 0.020
Importance

Default Model

mtry = floor(sgrt(p)) = floor(sqgrt(39)) = ©
trees = 500 (num.trees)
min n = 1 (min.node.size)

(cores <- parallel::detectCores|())
8

Remember this setting from 100 slides ago?

rf_def mod <-

rand forest () %>%

set engine ("ranger",
num.threads = cores,
importance = "permutation",

verbose = TRUE) %>%
set mode ("classification")

94

ranger: :ranger

Usage

ranger (
formula = NULL,
data = NULL,
num.trees = 500,
mtry = NULL,
importance = "none”,
write.forest = TRUE,
probability = FALSE,
min.node.size = NULL,
max.depth = NULL,
replace = TRUE,

importance

Variable importance mode, one of "'none’, “impurity’, "impurity_corrected’, ’per-
mutation’. The ’impurity’ measure is the Gini index for classification, the vari-
ance of the responses for regression and the sum of test statistics (see splitrule)
for survival.

sample.fraction = ifelse(replace, 1, 0.632),

case.weights = NULL,
class.weights = NULL,
splitrule = NULL,
num.random.splits = 1,

alpha = 0.5,

minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,

95

https://cran.r-project.org/web/packages/ranger/ranger.pdf

 impurity: the probability of a variable being wrongly classified when it is
randomly chosen (Gini index)
« if all elements belong to a single class, then is “pure”; Gini index =0
* elements randomly distributed across classes; Gini index =1
* lowest Gini is selected for the root

. icmpurity-based feature importance can inflate the importance of numerical
eatures

* each time a break point is selected in a variable, every level of the variable is tested to find the
best break point

* continuous variables will have many more split points, which results in a higher probability that
by chance that variable happens to predict the outcome well, since variables where more splits
are tried will appear more often in the tree

e permutation: calculate the increase in the model’s prediction error after
permuting the feature

» afeature is “important” if shuffling its values increases the model error, because in this case
the model relied on the feature for the prediction

e a feature is “unimportant” if shuffling its values leaves the model error unchanged, because in
this case the model ignored the feature for the prediction

* permutation-based feature importance is more reliable than impurity, but:

* more computationally expensive
» potentially biased toward collinear predictive variables

rf res final %>%
pluck (".workflow", 1
pull workflow fit ()

vip (geom = "point",
num features = 2
labs(y = "Importance

title = "vip()")

vip()

enrl_grd

sp_ed fg_Y
econ_dswntg_Y

tag_ed fg_Y
ayp_lep_unknown

p_white

p_hispanic_lating
p_asian

ethnic_cd_H
p_american_indian_alaska native
ethnic_cd_W

at
p_black_african_american
p_multiracia

lon
tst_dt
ayp_lep_F
gndr_M u
ethnic_cd_M .

(@) (@)
5>%
(@)
S

)
%>

0) +
(permutation) ",

.
L
L]
L
.
.
.
L]
.
.
.
L]
0.005 0.010 0.015

Importance (permutation)

0.02(

97

98

mtry

* Suggestion (Boehmke): start with five evenly spaced values of mt rv across
the range 2 to p centered at the recommended default

p <- 2 O #length (setdiff (names (data train), “outcome"))
grid max entropy (mtry(range = c(2, p)), size = 5H)
A tibble: 5 x 1
mtry

<1nt>
1 2
2 s
3 19
4 10
o 15

