Penalized Regression

Ridge, Lasso, Elastic net

Joe Nese
Week 4, Class 1

Agenda

* Introduce penalized regression
* Specify a model
* Fit a model

e Tune a model
* regular grids

Penalized Regression

(AKA Regularized Regression)

Let’s revisit linear regression

* What’s good
* Parsimonious
* Interpretable results

» Coefficients are unbiased (given standard assumptions)
* Because they minimize the sum-of-squared errors (SSE)

* Lowest variance (of all unbiased linear techniques)

Let’s revisit linear regression

* What’s not so good
* Sensitive to highly correlated predictors — multicollinearity
* Including irrelevant predictors may hurt model performance
* Model fit is influenced by “outliers” because it wants to minimize SSE

* Although we can model nonlinearity by adding terms to the model (x? or log(x))
* this may not capture the relationship between predictors and outcome
» adds predictors to the model (problematic with many predictors fewer observations)

Penalized Regression

* OLS regression coefficients are unbiased because the model minimizes SSE

e But it turns out that adding a little bias to the coefficients can
substantially decrease variance, resulting in a smaller MSE and better

prediction of unseen data
* How to add bias to the coefficients?

* Add a penalty to the SSE if the coefficients become too large
* Basically: penalize the model for coefficients as they move away from zero

* As a regression coefficient grows large, the penalty must also increase to enforce
the minimization of SSE

* |n order to have a large coefficient, a predictor will need to have a large impact
on the model fit

Penalized Regression

* How does a penalty help?

 Shrinking our coefficients toward zero reduces the model's variance (think of
model where all coefficients are equal to zero — no variance)

* The optimal penalty will balance reduced variance with increased bias

 Particularly useful for dealing with multicollinearity

* As multicollinearity increases, the estimated regression coefficients are inflated and become
unstable

Penalized Regression Models

1) ridge regression (Hoerl, 1970)
2) lasso (Tibshirani, 1996)
3) elastic net (Aou & Hastie, 2005)

* AKA
* Regularized Regression
* Shrinkage methods

Ridge Regression

squared coefficients

n P
SSE, = Z()’i — 9%+ /12,3]'2
i=1 =1

penalty

* Penalize the model for coefficients as they move away from zero
unless there is a proportional reduction in the SSE

* L, penalty = second-order penalty (squared coefficients)
* A =0 = linear regression

* As the penalty (A) increases, the coefficients shrink toward O (at
different rates)

* A new set of coefficients is produced for each value of A

Penalized Regression

* Scale matters
* The units of the predictors can substantially affect results

* The scale of predictors doesn’t affect SSE, but does affect the coefficients
* Think of coefficient interpretation for meters vs. kilometers
* Ridge regression will pay a larger penalty for meters

* So we need to put all predictors on the same scale prior to analysis

* Center and scale (standardize) all predictors
(x - mean(x)) / sd(x)

Ridge Regression

* Ridge penalty is mostly associated with addressing collinearity between
predictors

* Shrinks the coefficients of correlated predictors toward each other
* rather than allowing one to be wildly positive and the other wildly negative

* Many less-important predictors get pushed toward zero which helps identify
the important predictors in our data

. Shrinlks coefficients toward 0, but will never equal 0, no matter how large the
penalty

* A coefficient equal to 0 would, of course, be dropped from the model
* That would be automatic feature selection!
e That would be nice!

* [asso models do this!
* Least Absolute Shrinkage and Selection Operator

|aSSO - Least Absolute Shrinkage and Selection Operator

n P
SSE, = Z()’i -9+ /12|,3j|
i=1 =1

penalty

absolute coefficients

* Penalize the model for coefficients as they move away from zero
unless there is a proportional reduction in the SSE

* L, penalty = absolute coefficients

* As the penalty (A) increases, the coefficients shrink toward O (at
different rates)

* Allows coefficients equal to O

Ridge and lasso

* Both equally penalize overestimating and underestimating a coefficient

* No free lunch

Ridge

P
Az p?
=

* Larger errors are worse

L, penalty

* Tends to shrinks coefficients of correlated
predictors toward each other
Extreme example: for P identical predictors, each has a coefficient of
1/P the size as one modeled by itself
e Helps if you want to keep all predictors in your
model and reduce the noise of less influential
variables (e.g., smaller data sets with severe
multicollinearity)

Lasso P
AZ|/31|
j=1

e Additional error is equally bad everywhere

L, penalty

* Tends to just choose one predictor and not model
the others

Extreme example: for P identical predictors, will model one predictor
and allow coefficient of zero for the rest

* Helps find the predictors with the largest (and
most consistent) coefficients in data with many
predictors

Code credit to Ed Rubin

14

https://github.com/edrubin/EC524W20

loss

15

L, loss function)

2 (i — 9)* :

(4.5)2
20.25 45 |
L, loss function >4
Zly; — i <

|4.5] 2

4.5
O ﬂ

16

Elastic net

n P P
SSE,. = z(yi — 9% + /12 B + /12|ﬁj|
i=1 =1 =1

 Combines the two types of penalties

* Enables effective regularization with ridge penalty (L,)
* Offers feature selection with lasso penalty (L,)

* Better able to handle multicollinearity

Specity a model

Specifty the model

e select a model
* https://www.tidymodels.org/find/parsnip/
* we will be discussing many different modeling options

* select the engine
* the package (software) that will be used to fit the model

* select the mode
* regression or classification

* We're just setting up the framework, we’re not estimating anything
yet

https://www.tidymodels.org/find/parsnip/

parsnip
>

select a model

* Welcome to {parsnip}!

e List of at least 30 models
* https://www.tidymodels.org/find/parsnip/

* We will be using the model for linear regression
* which also allows for penalized regression

linear reg()

20

https://www.tidymodels.org/find/parsnip/

parsnip
>

set engine ()

» Used to specify which package will be used to fit the model
* and any arguments specific to that software

 We'll be using glmnet (default) for our penalized regression models
e can alsouse stan, spark, keras

set engine ("glmnet")

21

https://parsnip.tidymodels.org/reference/linear_reg.html

set mode ()

* specify whether the outcome is
* set mode (“regression”)
* set mode (“classification”)

22

Specifty the model

linear reg() %>%

set engine ("glmnet") %>%

set mode ("regression") %>% ¢ ccaundent

Or‘

linear reg(mode = “regression”)

set engine ("glmnet")

(@) O
5>%

Just getting in the habit

only option available

parsnip

linear reg()

Linear_reg(mode = "regression", penalty = NULL, mixture = NULL)

mode = can only be “regression,” not “classification”

(Logistic reg is used for classification)

penalty = An non-negative number representing the total amount of

regularization. This can be a combination of L1 and L2 (depending on
the value of mixture)

mixture = A number between zero and one (inclusive) that
represents the proportion of L1 regularization (the lasso)

* ridge=mixture = 0; noll

e lasso=mixture = 1; completely L1 (and no ridge)

e enet=0 < mixture < 1; mixture of L1 (lasso)and ridge (L2)

math <- math <- read csv(here::here("data",
1 - Initial Split

set.seed (3000)
math split <- 1initial split (math)

math train <- training(math split)
math test <- testing(math split)

2 - Resample

set.seed (3000)
cv _splits <- vfold cv(math train)

"train.csv"))

25

Before we continue...

* Penalized regression cannot handle missing data
* Can either delete or impute
* For simplicity here, we are just going to delete

* We need to center and scale our continuous predictors

* This is part of data preprocessing, or feature engineering

* “the process of creating representations of data that increase the effectiveness of a
model” (Kuhn & Johnson, 2019)

* Very quick preview of next week’s topic and the {recipes} package

* Center: average is subtracted from the predictor’s individual values
 All predictors will have a mean of zero

 Scale: divide a variable by the standard deviation
 All predictors have a standard deviation of one

{recipes}

penreg rec <-

recipe (
formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train

) >3

step naomit (all predictors (), skip = TRUE) %>%

step stringZ2factor (econ dsvntg) 3%>%

step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

27

{recipes}

penreg rec <-

recipe (defines outcome and predictors

formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train

) >%

step naomit (all predictors (), skip = TRUE) %>%

step stringZ2factor (econ dsvntg) 3%>%

step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

28

{ LECLIPES } recipes

u“"’é

penreg rec <-
recipe (

formula = score ~ enrl grd + econ dsvntg + lat + lon,

data = math train |Catalogsthe names and types of each variable
) $>% Informs recipe () whatis numeric and what is nominal

step naomit (all predictors (), skip = TRUE) %>%
step stringZ2factor (econ dsvntg) 3%>%
step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

29

{recipes}

penreg rec <-

recipe (
formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train

(6] (@)
) B>%

drops missing values from
all predictors

step naomit (all predictors (), skip = TRUE) %>%

step stringZ2factor (econ dsvntg) 3%>%
step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

30

{recipes}

penreg rec <-
recipe (
formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train
) $>%

step naomit (all predictors (), skip = TRUE) %>%

o

step stringZ2factor (econ dsvntg) %>% converts strings (“Y”, “N”) to factors

step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

31

{recipes}

penreg rec <-
recipe (
formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train
) $>%

step naomit (all predictors (), skip = TRUE) %>%

step stringZ2factor (econ dsvntg) 3%>%

Converts nominal data into dummy variables

step dummy (econ dsvntg) %>%

step normalize(lat, lon, enrl grd)

32

{recipes}

penreg rec <-
recipe (
formula = score ~ enrl grd + econ dsvntg + lat + lon,
data = math train
) >%
step naomit (all predictors (), skip = TRUE) %>%

step stringZ2factor (econ dsvntg) %>%

Normalizes (centers and scales); necessary for penalized

&> 9
step dummy (econ dsvntg) %>% regression

step normalize(lat, lon, enrl grd)
o - Could also use:

step center (lat, lon, enrld grd)
step scale(lat, lon, enrld grd)
step normalize(all numeric(), —all_ou%gomes())

3 - Set Model

Ridge

mod ridge <- linear reg() %>%
set engine ("glmnet") %>%
set mode ("regression") %$>% # redundant; Just setting a habilt
set args(penalty = .1, # arbitrarily set the penalty = .1

mixture = 0) # specifies a ridge regression model

34

lasso

mod lasso <- linear reg() $%>%
set engine ("glmnet") %>%
set mode ("regression") %$>% # redundant; Just setting a habilt
set args(penalty = .1, # arbitrarily set the penalty = .1

mixture = 1) # specifies a lasso model

35

Elastic net

(@) (@)
5>%

mod enet <- linear reg(

)
set engine ("glmnet") %>

set mode ("regression") %$>% # redundant; Just setting a habilt
set args(penalty = .1, # arbitrarily set the penalty = .1
mixture = .7) # specifies 70% L1 penalty (lasso)

and 30% L2 penalty (ridge)

36

Fit a model

fit resamples|()

* Fit multiple models via resampling

fit resamples(
object,
preprocessor,
resamples,

LA 4
metrics = NULL,
control = control resamples|()

38

fit resamples|()

* Fit multiple models via resampling mod_ridge

mod_lasso

fit resamples (| o mod_enet
— parsnip model specification or a

Obj ect, workflows::workflow () we’ll getto this later
preprocessor,
resamples,

ooo,

metrics = NULL,
control = control resamples|()

39

fit resamples|()

* Fit multiple models via resampling

fit resamples(

object,
a traditional model formula or a
preprocessor, recipes::recipe()

resamples, penreg rec

score ~ enrl grd + econ dsvntg + lat + lon

ooo,

metrics = NULL,
control = control resamples|()

40

fit resamples|()

* Fit multiple models via resampling

fit resamples(
object,
preprocessor,

resamples, A resample rset created from an rsample function

, cv_splits

metrics = NULL,
control = control resamples|()

41

fit resamples|()

* Fit multiple models via resampling

fit resamples(

object,
preprocessor,
resamples,
N Ayardstick::metric set () or NULL to compute a
metrics = NULL, standard set of metrics

control = control resamples|()

42

fit resamples|()

* Fit multiple models via resampling

fit resamples(
object,
preprocessor,
resamples,

LA 4
metrics = NULL,
control = control resamples|()

43

4 - Fit the models
Ridge

fit ridge <- fit resamples (
mod ridge,

preprocessor = penreg rec,

resamples = cv_splits,

metrics = yardstick::metric set(rmse), # default is rmse & rsq
control = control resamples (verbose = TRUE,

save pred = TRUE))

This will print to your console the model fitting
process by Fold, so you can get an idea of
progress and time

44

4 - Fit the models

Ridge

fit ridge <- tune::fit resamples (yaEbUCk
mod ridge, -

~ G o

preprocessor = penreg rec, >
resamples = cv splits,
metrics = yardstick::metric set (rmse), # default is rmse & rsq
control = tune::control resamples (verbose = TRUE,

save pred = TRUE))

This will print to your console the model fitting
process by Fold, so you can get an idea of
progress and time

45

4 - Fit the models
Ridge

fit ridge <- tune::fi1t resamples

mod ridge,

preprocessor = penreg rec,

resamples = cv splits,

metrics = yardstick::metric set (rmse), # default is rmse & rsq
control = tune::control resamples (verbose = TRUE,

save pred = TRUE))

This will save the out-of-sample (analysis)
predictions for each model evaluated

46

Ridge

fit ridge $>%

tune::collect metrics()

47

Ridge

fit ridge $>%

tune::collect metrics (summarize

FALSE)

48

lasso

fit lasso <- tune::fl1t resamples

mod lasso,

preprocessor = penreg rec,

resamples = cv splits,

metrics = metric set (rmse),

control = tune::control resamples (verbose = TRUE,

save pred = TRUE))

fit lasso %>%

collect metrics()

A tibble: 1 x 5
.metric .estimator mean n std err
<chr> <chr> <dbl> <int> <dbl>
1 rmse standard 101. 10 0.356

Elastic net

fit_enet < -

mod enet,

tune::fit resamples (

preprocessor = penreg rec,

resamples
metrics =

control =

fit_enet $>%

= cv_splits,
metric set (rmse),
tune::control resamples (verbose =

save pred

collect metrics()

A tibble: 1 x 5
.metric .estimator mean n std err

<chr> <chr>

<dbl> <int> <dbl>

1 rmse standard 101. 10 0.350

TRUE,
= TRUE))

50

collect metrics (fit ridge)

collect metrics (fit lasso)

collect metrics (fi1t enet)

51

Penalized regression

* Thus far we have used penalty = .1 (A)

* Choosing a good value for the penalty is very important
* Too small a penalty and our model is essentially OLS
* Too large a penalty and we shrink all our coefficients too close to zero

* So how can we find an optimal value?
* Model tuning

Tune a model

regular grids

{tune}

* Facilitates the tuning of hyper-parameters in tidymodels packages

* Hyperparameters (tuning parameters) control the complexity of some
ML models (and the bias-variance trade-off)

* Hyperparameters cannot be directly estimated from the data
 Some models have many tuning parameters (e.g., boosted trees)

* We use cross-validation to find the optimal tuning parameter values
with either:
* grid search - predefined values

* iterative search - where each iteration finds novel tuning parameter values to
evaluate

54

tune ()

* A placeholder for hyper-parameters to be "tuned”

ridge tune mod <- linear reg() %>%
set engine ("glmnet") %>%
set args(penalty = tunel(),

leture — O) # specifies a ridge regression model

55

orid search

* Set a pre-defined set of tuning parameter values and evaluate their
performance so that the best values can be used in the final model
* For models with more than one tuning parameter, the grid is
multidimensional

e Using resampling to evaluate each distinct parameter value
combination to get estimates of how well each performs

 Calculate results and model performance, and use the “best” tuning
parameter combination to fit to the entire training set

Regular grids

e Usually a combination of vectors of tuning parameter values

* The number of values don't have to be the same per parameter

* The values can be regular on a transformed scale (e.g. log-10 for penalty)

* Quantitative and qualitative parameters can be combined

* As the number of parameters increases, so does the burden of dimensionality
* Thought to be inefficient but not in all cases

* Bad when performance plateaus over a range of one or more parameters

Kuhn (2019)

https://rstudio-conf-2020.github.io/applied-ml/Part_4.html#37

regular grid non-regular grid

100 & o . 100 ¢
L]
0.75 0.75 *
o ot
35 B
%0350 & o ' %050 *®
- =
L
025 0.25
*e
000 e . . 0.00
0.000 0.025 0.050 0.075 0.100 0.0 0.1 0.2 0.3

penalty penalty

regular grid example

base: :expand.grid (

penalty = c¢(.001, .01, .1),
mixture = c(O, .5, 1))

é 0.50

£

0.25

Do e e
0.000 0.025

0.050
penalty

0.075

0.100

59

grid regular ()

penalty () # from the {dials} package

grid regular (penalty())

grid regular (penalty(),

levels

10)

60

tune grid ()

* Aversionof fit resamples () that performs a grid search for
the best combination of tuned hyperparameters

tune grid(
object,
preprocessor,
resamples,
L 4
param info = NULL,
grid = 10,
metrics = NULL,
control = control grid()

61

tune grid ()

* Aversionof fit resamples () that performs a grid search for
the best combination of tuned hyperparameters

tune grid(
object,
preprocessor,
resamples,

a {parsnip} modelorworkflow ()

L 4
param info = NULL,
grid = 10,
metrics = NULL,
control = control grid()

62

tune grid ()

* Aversionof fit resamples () that performs a grid search for
the best combination of tuned hyperparameters

tune grid/(
object,
preprocessor, | Atraditional model formulaora recipe ()
resamples,

L 4
param info = NULL,
grid = 10,
metrics = NULL,
control = control grid()

63

tune grid ()

* Aversionof fit resamples () that performs a grid search for
the best combination of tuned hyperparameters

tune grid(
object,
preprocessor,
resamples,

Either:

- a data frame of tuning combinations (have columns for
each parameter being tuned and rows for tuning
parameter candidates)

- a positive integer (hnumber of candidate parameter sets

to be created automatically)

L 4
param info = NULL
grid = 10,
metrics = NULL,
control = control

=

64

ridge tune mod <- linear reg() %>%

set engine ("glmnet") 3%>%
set args (penalty = tune(),
mixture = 0)

penreg grid <- grid reqgular (penalty(), levels = 10)

ridge tune mod results <- tune::tune grid/(
ridge tune mod,
preprocessor = penreg rec,
resamples = cv splits,
grid = penreg grid,
metrics = yardstick::metric set (rmse),
control = tune::control resamples (verbose = TRUE,

save pred = TRUE)

65

Results: Tuned ridge regression

ridge tune mod results %>%
collect metrics ()

A tibble: 10 x 6

penalty .metric .estimator mean n std err

<dbl> <chr> <chr> <dbl> <int> <dbl>

1 0.0000000001 rmse standard 102. 10 0.351
2 0.00000000129 rmse standard 102. 10 0.351
3 0.0000000167 rmse standard 102. 10 0.351
4 0.000000215 rmse standard 102. 10 0.351
5 0.00000278 rmse standard 102. 10 0.351
o 0.0000359 rmse standard 102. 10 0.351
7 0.000404 rmse standard 102. 10 0.351
8 0.00599 rmse standard 102. 10 0.351
9 0.0774 rmse standard 102. 10 0.351
10 1 rmse standard 102. 10 0.351

Results: Tuned ridge regression

ridge tune mod results %>%
collect metrics ()

A tibble: 100 x 6

1d penalty .metric .estimator .estimate .config

<chr> <dbl> <chr> <chr> <dbl> <chr>
1 FoldOl 0.0000000001 rmse standard 101. ModelO1l
2 FoldO1l 0.00000000129 rmse standard 101. ModelOZ2
3 Fold01l 0.0000000167 rmse standard 101. ModelO3
4 FoldOl 0.000000215 rmse standard 101. ModelO4
5 Fold01l 0.00000278 rmse standard 101. ModelO5
o FoldO1l 0.0000359 rmse standard 101. ModelOo
7 FoldOl 0.0004064 rmse standard 101. ModelO7
8 FoldOl 0.00599 rmse standard 101. ModelO8
9 FoldO1l 0.0774 rmse standard 101. ModelO9
0 FoldOl 1 rmse standard 101. ModellO

S

with 90 more rows

Let’s make a regular grid for our enet model

(enet params <- parameters (penalty (), mixture()))

Collection of 2 parameters for tuning
id parameter type object class

penalty penalty nparam/|+]
mixture mixture nparam[+]
enet grid <- grid regular (enet params, levels = c (10,

A tibble: 50 x 2
penalty mixture
<dbl> <dbl>
.0000000001
.00000000129
.0000000167
.000000215
.00000278
.0000359
.000464
.00599
.0774

This is 50 models per fold = 500 models!

QWO JoUuTdkd W
s PO OOOOOOOO
ololololololololoN®)

==

with 40 more rows

options (scipen = 999)

unique (enet gridS$penalty)

[1] 0.00000000010000 0.00000000129155 0.00000001668101 0.00000021544347
[5] 0.00000278255940 0.00003593813664 0.00046415888336 0.00599484250319
[9] 0.07742636826811 1.00000000000000

unique (enet grid$mixture)
0.00 0.25 0.50 0.75 1.00

enet grid $>%
ggplot (aes (penalty, mixture, color = factor(penalty))) +

geom point () 100 factor(penalty)

0.0000000001
0.00000000129154966501488
¢ 0.0000000166810053720006
@ * 0.000000215443469003189
_‘EEIEEI ‘ * 0.00000278255940220713
E * 0.0000359381366380463
* 0.000464158883361278
0.00599484250318942
0.0774263682681128
1

0.75

0.00
0.00 0.25 0.50 0.75 1.00

penalty o9

options (scipen = 999)

unique (enet gridS$penalty)

[1] 0.00000000010000 0.00000000129155 0.00000001668101 0.00000021544347
[5] 0.00000278255940 0.00003593813664 0.00046415888336 0.00599484250319

[9] 0.07742636826811 1.00000000000000

unique (enet grid$mixture)
0.00 0.25 0.50 0.75 1.00

enet grid %>%

ggplot (aes (penalty, mixture,

geom point () +
geom Jjitter ()

0.9

mixture

03

0.0

0.00

color

0.50
penalty

factor (penalty)))

0.75

1.00

factor(penalty)

0.0000000001
0.00000000129154966501488

¢ 0.0000000166810053720006
* (0.000000215443469003189
* 0.00000278255940220713

* 0.0000359381366380463

* 0.000464158883361278

0.00599484250318942
0.0774263682681128
1

70

options (scipen = 999)

unique (enet gridS$penalty)

[1] 0.00000000010000 0.00000000129155 0.00000001668101 0.00000021544347
[5] 0.00000278255940 0.00003593813664 0.00046415888336 0.00599484250319
[9] 0.07742636826811 1.00000000000000

unique (enet grid$mixture)
0.00 0.25 0.50 0.75 1.00

enet grid $>%
ggplot (aes (penalty, mixture, color = factor(penalty))) +

geom point () 100 factor(penalty)

0.0000000001
0.00000000129154966501488
¢ 0.0000000166810053720006
@ * 0.000000215443469003189
_‘EEIEEI ‘ * 0.00000278255940220713
E * 0.0000359381366380463
* 0.000464158883361278
0.00599484250318942
0.0774263682681128
1

0.75

0.00
0.00 0.25 0.50 0.75 1.00

penalty =

Quick recap

enet params <- parameters (penalty (), mixture())
enet grid <- grid regular (enet params, levels = c (10, 5))

Make new tuned model

enet tune mod <- linear reg() 3%>%
set engine ("glmnet") %>%
set args (penalty = tune(),
mixture = tune())

Fit tuned model with tune grid()

enet tune mod results <- tune grid(
enet tune mod,
preprocessor = penreg rec,
resamples = cv splits,
grid = enet grid,

control = tune::control resamples(verbose = TRUE,
save pred = TRUE)

[Run the previous slide to show the verbose output]

Quick note

* |t turns out that evaluating values of penalty are cheaper than values of
mixture

* This is because the model simultaneously computes parameter estimates
for all possible penalty values (for a fixed mixture)

* So we evaluate 50 models pe fold, but only fit 5 per fold

 Somehow it is able to derive all penalty values given just one (the largest). |
believe it uses predict () somehow to do this. But | am unsure how, or
why it works for some hyperparemeters and not others.

* For example, | believe it will work with some models/packages (c5.0, earth,
enet, glmboost, glmnet, lasso, rpart) and some parameters (e.g., n_trees).

 Tidymodels will do this automatically (obviously | did not do this)

Results: Tuned elastic net regression

collect metrics (enet tune mod results)

A tibble: 100 x 7

penalty mixture .metric .estimator mean nstd_err
<dbl> <dbl><chr> <chr> <dbl> <int> <dbl>

1 0.0000000001
2 0.0000000001
3 0.0000000001
4 0.0000000001
5 0.0000000001
6 0.0000000001
7 0.0000000001
8 0.0000000001
9 0.0000000001

0 rmse standard 102. 100.351

0 rsq standard 0.229 100.00217
0.25rmse standard 101. 100.357
0.25rsq standard 0.230 100.00220
0.5 rmse standard 101. 10 0.357
0.5 rsq standard 0.230 100.00220
0.75rmse standard 101. 100.357
0.75rsq standard 0.230 100.00220
1 rmse standard 101. 100.357

10 0.0000000001 1 rsg standard 0.230 100.00220
... with 90 more rows

50 models x 2 metrics (rmse, rsq) = 100

show best ()

enet tune mod results %>%

show best (metric = "rmse", n = 5)

A tibble: 5 x 7

penalty mixture .metric .estimator mean n std err

<dbl> <dbl> <chr> <chr> <dbl> <int> <dbl>

1 0.0000000001 0.25 rmse standard 101. 10 0.357
2 0.00000000129 0.25 rmse standard 101. 10 0.357
3 0.0000000167 0.25 rmse standard 101. 10 0.357
4 0.000000215 0.25 rmse standard 101. 10 0.357
5 0.00000278 0.25 rmse standard 101. 10 0.357

76

select best()

tnr enet results %>%

Select_best(metric = "rmse")

A tibble: 1 x 2
penalty mixture
<dbl> <dbl>
1 0.0000000001 0.25

77

Final fit!

Select best tuning parameters
enet best <- enet tune mod results %>%
select best (metric = "rmse")

Finalize your model using the best tuning parameters
enet mod final <- enet tune mod %>%
finalize model (enet best)

Finalize your recipe using the best turning parameters
enet rec final <- penreg rec %>%
finalize recipe (enet best)

b R last fit nitial dat lit This will spend your test set...
un your as 1 orn your 1nitla data Splil)
enet test results <- last fit(SO DON’T DO THIS UNLESS YOU ARE CERTAIN

enet mod final, OF YOUR MODELLING PROCESS

enet rec final
. . ’ '
split = math_split) ABSOLUTELY CERTAIN!

#Collect metrics
enet test results %>%
collect metrics ()
A tibble: 2 x 3
.metric .estimator .estimate
<chr> <1C::hrc>i 4 10§dbl> These are the prediction measures you can
rmse standar .
rsqg standard 0.235 reasonably expect

78

N

Quick comparison

 Resampled fit

show best (enet tune mod results, metric = "rmse", n = 1) $>%
bind rows (show best (enet tune mod results, metric = "rsq", n
select (.metric , "~ .estimator , mean)

A tibble: 2 x 3

.metric .estimator mean
<chr> <chr> <dbl>
1 rmse standard 101.
2 rsqg standard 0.230
e Final fit

enet test results %>%

collect metrics()

A tibble: 2 x 3

.metric .estimator .estimate
<chr> <chr> <dbl>
rmse standard 101.
rsq standard 0.235

NN

o\©
o\°

Name the package i

rsample

o

*initial split()

set.seed (210)
math split <- initial split (math)

80

L

Name the package T E

o

* training ()

* testing ()

math train <- training(math split)
math test <- testing(math split)

81

Name the package i

rsample

o

*viold cv()

set.seed (210)

cv splits <- vfold cv(math train)

82

Name the package

* recipe ()
* step *()

penreg rec <-

recipe (
score ~ enrl grd + econ dsvntg + lat + lon,
data = math train

) $>%

step dummy (all nominal ()) %>%

step normalize (lat, lon)

83

Name the package

* linear reg()
* set engine ()
set mode ()
* set args()

mod ridge <- linear reg() %>%
set engine ("glmnet") %>%
set mode ("regression") %>%
set args (penalty = .1,

mixture = 0)

84

Name the package

*fit resamples ()

fit resamples (
penreg rec,
model = mod ridge,
resamples = cv splits,
metrics = yardstick::metric set (rmse),
control = tune::control resamples (verbose = TRUE,

save pred = TRUE)

85

Name the package

* tune grid()

Lab 2

