
Data Splitting and Resampling

Joe Nese

Week 3, Class 1

1

Data Specialist at PSI

• The Data Science Specialist works with PSI scientists on various federal grants and sponsored projects,
including a large-scale, multi-site center grant (P50) and the RADx-UP grant to scale-up COVID-19 testing to
the Latinx community.

• The incumbent interfaces with and provides support across projects to facilitate data harmonization of
projects involving multiple sources of data and means of data collection (observation, biospecimen, imaging,
Qualtrics, REDCap, etc.).

• Support for other projects includes acting as a resource to personnel accessing data; coordinating with
methodologists; running routine descriptive analysis; cleaning, formatting, and preparing files for datasets;
and conducting light analysis, such as descriptive analysis and frequencies.

• Although remote work is possible at the start of this position, the ideal candidate would eventually be able
to work on-site.

https://careers.uoregon.edu/en-us/job/525722/pro-tem-research-assistant-data-science-specialist

2

https://careers.uoregon.edu/en-us/job/525722/pro-tem-research-assistant-data-science-specialist

Agenda

• Data splitting and why it matters

• Introduce resampling methods

3

Data Splitting

4

Data splitting

• The goal of machine learning is to predict results based on new
(unseen) data

• “The best way to measure a model's performance at predicting new
data is to predict new data.” – paraphrasing/quoting multiple experts

• The simplest way to do this is to split our data into two parts:
• Training set
• Test set

• We then fit a model to the training data and predict the results of the
test set
• fit -> training
• predict -> test

5

Data splitting

• We can do anything we want to the training set
• train our algorithms, tune hyperparameters, compare models, and all of the

other activities required to choose a final model

• We do nothing with the test set until we have finalized our model
using from the training set
• Data leakage is using ANY part of the test set in our training set

• Using the test set during our modeling process

• Pre-processing or feature engineering the full data (training and test sets together)

• Time series design, when the outcome of one series is used in the prediction of the next

6

7

Data

Training
set

Test
set

Data

Training

Test

{rsample}

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)

• These three functions are meant to be used in conjunction

• A good rule is to make these the first lines of your ML project code
• some differ

8

initial_split() help documentation

9

Let’s take a look at initial_split()

math <- read_csv(here::here("data", "train.csv"))

set.seed(3000)

(math_split <- initial_split(math))

<Analysis/Assess/Total>

<142070/47356/189426>

math_split %>% training() %>% nrow() / nrow(math)

[1] 0.7500026

names(math_split)

[1] "data" "in_id" "out_id" "id"

class(math_split)

[1] "rsplit" "mc_split"
10

Additional arguments

11

The default is simple random assignment, with:
- 75% to the training set, and
- 25% to the test set

A general guideline is somewhere between 60%/40% & 80%/20%.

- Spending too much in training (e.g., > 80%) may mean poor
predictive performance. It may fit the training data very well,
but is not generalizable (overfitting).

- Spending too much in testing (e.g., > 40%) may mean poor
assessment of model parameters (underfitting).

- If you have a lot of data, you may see little predictive benefit of
using the entire data, but an increase in computational time.

- If you have more features/predictors than rows, you may need
a larger sample size to identify consistent signals in the
features.

split_data <- initial_split(ames, prop = .70)

Let’s take a look at prop

set.seed(3000)

(math_split70 <- initial_split(math, prop = .70))

<Analysis/Assess/Total>

<132599/56827/189426>

math_split70 %>% training() %>% nrow() / nrow(math)

[1] 0.7000042

12

Additional arguments

13

As opposed to simple random assignment, you can use stratified sampling to
ensure the training and test sets have similar outcome (Y)
distributions/proportions (equal to that of the full data set). Helps ensure a
balanced representation of the response distribution in both the training and test
sets.

Especially useful if:
- the continuous outcome is not normally distributed (skewed)

- stratified sampling will segment outcome into quantiles and randomly
sample from each

- the categorical outcome has substantial unbalanced classes (e.g., 6% HS
dropout, 94% graduate)
- this will matter less with large data

split_data <- initial_split(ames, strata = Sales_Price)

Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome

14

math_split %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5885 0.04142324
B 3148 0.02215809
H 34537 0.24309847
I 1848 0.01300767
M 8930 0.06285634
P 1077 0.00758077
W 86645 0.60987541

math_split %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1810 0.038221134
B 1002 0.021158882
H 11345 0.239568376
I 594 0.012543289
M 2965 0.062610862
P 353 0.007454177
W 29287 0.618443281

Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome

15

math_split %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5885 0.04142324
B 3148 0.02215809
H 34537 0.24309847
I 1848 0.01300767
M 8930 0.06285634
P 1077 0.00758077
W 86645 0.60987541

math_split %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1810 0.038221134
B 1002 0.021158882
H 11345 0.239568376
I 594 0.012543289
M 2965 0.062610862
P 353 0.007454177
W 29287 0.618443281

Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome

16

math_split %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5885 0.04142324
B 3148 0.02215809
H 34537 0.24309847
I 1848 0.01300767
M 8930 0.06285634
P 1077 0.00758077
W 86645 0.60987541

math_split %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1810 0.038221134
B 1002 0.021158882
H 11345 0.239568376
I 594 0.012543289
M 2965 0.062610862
P 353 0.007454177
W 29287 0.618443281

math_split_strat <- initial_split(math, strata = ethnic_cd)

math_split_strat %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5718 0.040247765
B 3114 0.021918772
H 34465 0.242591680
I 1841 0.012958401
M 8910 0.062715563
P 1067 0.007510382
W 86955 0.612057436

math_split_strat %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1977 0.041747614
B 1036 0.021876848
H 11417 0.241088774
I 601 0.012691106
M 2985 0.063033195
P 363 0.007665343
W 28977 0.611897120

Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome

17

math_split %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5885 0.04142324
B 3148 0.02215809
H 34537 0.24309847
I 1848 0.01300767
M 8930 0.06285634
P 1077 0.00758077
W 86645 0.60987541

math_split %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1810 0.038221134
B 1002 0.021158882
H 11345 0.239568376
I 594 0.012543289
M 2965 0.062610862
P 353 0.007454177
W 29287 0.618443281

math_split_strat <- initial_split(math, strata = ethnic_cd)

math_split_strat %>%
training() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 5718 0.040247765
B 3114 0.021918772
H 34465 0.242591680
I 1841 0.012958401
M 8910 0.062715563
P 1067 0.007510382
W 86955 0.612057436

math_split_strat %>%
testing() %>%
janitor::tabyl(ethnic_cd)
ethnic_cd n percent

A 1977 0.041747614
B 1036 0.021876848
H 11417 0.241088774
I 601 0.012691106
M 2985 0.063033195
P 363 0.007665343
W 28977 0.611897120

Resampling

18

We split – now what?

• Again, we NEVER use the test set until we have a “final model”

• And “the best way to measure a model's performance at predicting
new data is to predict new data”

• So how do we measure model performance during the training
phase? What new data do we predict?

• Just re-predicting the training set is not ideal
• biases results - may well predict training set but won’t generalize to new data

• no measure of variance if we only have one measure of performance (based
on predicting the training set)

• We resample training set

19

Data

Training
set

Test
set

Resampling Training
set

Resampling

22

Training
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k

Training:Test::Analysis:Assessment
-OR-

Analysis functions like the Training set
Assessment functions like the Test set

Resampling

23

Data

Training
set

Test
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k

(Confusing) Terms

24

Data

Training
set

Test
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k

aka
holdout set

aka
validation
test
evaluation
holdout

aka
training

Common Resampling Methods

• k-fold cross-validation
• Probably the most common resampling method for model evaluation and

model selection in applied ML

• Monte Carlo cross-validation

• Bootstrapping

• Leave one out cross validation (LOOCV)

• Others (not discussed here)
• Rolling origin forecasting – for time series data
• 632 and 632+ methods
• Maximum dissimilarity sampling

25

k-fold cross-validation (k-fold CV)

• We randomly split the training data into k distinct samples ("folds") of
(approximately) equal size

10-fold CV

• k = 10

• Within each fold, a random 10% (1/10) of training data are sampled
for the assessment set
• The 10% assessment sample is completely different for each fold
• Each observation (row) serves in one and only one assessment sample

• The remaining 90% of the training data serve as the analysis set in the
fold

26

10-fold CV

27

Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis

k-fold CV

5-fold CV

• k = 5

• Within each fold, a random 20% (1/5) of training data are sampled for
the assessment set
• The 20% assessment sample is completely different for each fold

• Each observation (row) serves in one and only one assessment sample

• The remaining 80% of the training data serve as the analysis set in the
fold

28

5-fold CV

29

Fold01 Fold02 Fold03 Fold04 Fold05

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis

Results

• Fold01
• We fit our model on the Fold01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (objective functions)

• We repeat this process until we've predicted all k assessment sets

• The final performance is the aggregate (average) performance
measure across the k folds

30

31

Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01

02

03

04

05

06

07

08

09

10

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

performance
measure

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

Average RMSE

(variance)

k-fold CV suggestions

• Larger values of k:
• produce less bias (because the difference between a fold and the training set

decreases)

• more computationally intensive

• 10 folds is a good rule-of-thumb
• Leave-one-out is the most extreme resampling technique

• Use n - 1 to predict each row

• 10-fold CV performed comparably to LOOCV (Molarino, 2005)

32

k-fold CV suggestions

• Has more variability compared to other resampling methods (bootstrapping)

• Repeating k-fold CV can improve the accuracy of the estimates while
maintaining small bias (Molarino, 2005; Kim, 2009)
• Helps reduce variability between folds; gives a more complete estimate of the overall

between-fold variability (i.e., the variance distribution)
• 10-fold CV repeated 5 times = 50 models/performance measures

• Particularly useful for smaller data sets

• For large training sets, variance and bias issues are less of a concern

• Repeated CV is not equivalent to increasing the number of folds (e.g., 50-fold CV)

33

vfold_cv()

data = your training set from training()

v = number of folds (default = 10)

repeats = number of repeats (default = 1)

strata = variable to conduct stratified sampling to create the folds

breaks = the number of bins desired to stratify a numeric
stratification variable

34

vfold_cv()

set.seed(3000)

(cv_splits <- vfold_cv(math_train))

10-fold cross-validation

A tibble: 10 x 2

splits id

<named list> <chr>

1 <split [127.9K/14.2K]> Fold01

2 <split [127.9K/14.2K]> Fold02

3 <split [127.9K/14.2K]> Fold03

4 <split [127.9K/14.2K]> Fold04

5 <split [127.9K/14.2K]> Fold05

6 <split [127.9K/14.2K]> Fold06

7 <split [127.9K/14.2K]> Fold07

8 <split [127.9K/14.2K]> Fold08

9 <split [127.9K/14.2K]> Fold09

10 <split [127.9K/14.2K]> Fold10
35

vfold_cv()

cv_splits$splits[[1]]

<Analysis/Assess/Total>

<127863/14207/142070>

cv_splits$splits[[1]] %>%

analysis() %>%

nrow()

[1] 127863

cv_splits$splits[[1]] %>%

assessment() %>%

nrow()

[1] 14207 36

cv_splits$splits[[1]]

<Analysis/Assess/Total>

<127863/14207/142070>

cv_splits$splits[[1]] %>%

assessment()

A tibble: 14,207 x 40

id gndr ethnic_cd attnd_dist_inst~ attnd_schl_inst~ enrl_grd calc_admn_cd

<dbl> <chr> <chr> <dbl> <dbl> <dbl> <lgl>

1 37 F W 2042 387 8 NA

2 47 M M 2142 1330 8 NA

3 72 M W 2057 480 7 NA

4 96 F A 2041 380 8 NA

5 109 M W 2090 593 7 NA

6 146 M W 1926 97 7 NA

7 175 M W 2082 528 8 NA

8 189 F W 2087 4555 7 NA

9 196 M W 2082 506 8 NA

10 206 M B 1970 224 7 NA

... with 14,197 more rows, and 33 more variables:

37

Monte Carlo Cross-Validation

• For each split, a random sample (without replacement) is taken with a
specified proportion going into the analysis set and the rest going to
the assessment set

• The splitting procedure is conducted a specified number times
• The number of splits must be large enough have adequate precision

• Like k-fold CV, a model is created on the analysis set and the
assessment set is used to evaluate the model, and the average of the
results across resamples are used to estimate future performance

• As opposed to k-fold CV, MC CV produces resamples that are likely to
contain overlap

38

10-fold CV

39

Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis

Monte Carlo CV (10 times)

40

Resample01 Resampl02 Resample03 Resample04 Resample05 Resample06 Resample07 Resample08 Resample09 Resample10

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis

mc_cv()

data = your training set

prop = proportion going to the analysis set (default = .75)

times = number of times to repeat the sample (default = 25)

strata = variable to conduct stratified sampling to create the folds

breaks = the number of bins desired to stratify a numeric
stratification variable (default = 4)

41

mc_cv()

(mc_splits <- mc_cv(math_train))

Monte Carlo cross-validation (0.75/0.25) with 25 resamples

A tibble: 25 x 2

splits id

<list> <chr>

1 <split [106.6K/35.5K]> Resample01

2 <split [106.6K/35.5K]> Resample02

3 <split [106.6K/35.5K]> Resample03

4 <split [106.6K/35.5K]> Resample04

5 <split [106.6K/35.5K]> Resample05

6 <split [106.6K/35.5K]> Resample06

7 <split [106.6K/35.5K]> Resample07

8 <split [106.6K/35.5K]> Resample08

9 <split [106.6K/35.5K]> Resample09

10 <split [106.6K/35.5K]> Resample10

... with 15 more rows

42

mc_cv()

nrow(math_train)

[1] 142070

mc_splits$splits[[1]]

<106553/35517/142070>

mc_splits$splits[[12]]

<106553/35517/142070>

mc_splits$splits[[25]]

<106553/35517/142070>

analysis(mc_splits$splits[[1]]) %>% nrow() / nrow(mc_splits$splits[[1]]$data)

[1] 0.7500035
43

mc_cv()

nrow(math_train)

[1] 142070

mc_splits$splits[[1]]

<106553/35517/142070>

mc_splits$splits[[12]]

<106553/35517/142070>

mc_splits$splits[[25]]

<106553/35517/142070>

analysis(mc_splits$splits[[1]]) %>% nrow() / nrow(mc_splits$splits[[1]]$data)

[1] 0.7500035
44

bootstrapping

• A bootstrap sample is a simple random sample that is the same size
as the training set where the data are sampled with replacement
• So after a row is selected for inclusion in the subset, it’s still available for

further selection

• Each bootstrap sample is likely to contain duplicate values
• Analysis set

• On average, 63.21% of the original sample ends up in a bootstrap sample

• Assessment set
• Those rows not selected in a bootstrap sample are considered out-of-bag (OOB)

45

46

B01 B02 B03 B04 B05 B06 B07 B09 B09 B10

01

02

03

04

05

06

07

08

09

10

Times sampled: 0 1 2 3

Assessment
Analysis

Bootstrap vs K-fold CV

• K-fold CV tends to have less bias and more variance

• bootstrapping tends to have more bias but less variance

• bootstrap has more bias because of replacement (similar to k = 2)
• This is problematic when the training set is small, and less so as the sample

increases (n ≥ 1,000)

47

bootstraps()

data = your training set

times = number of bootstrap samples (default = 25)

strata = variable to conduct stratified sampling to create the folds

breaks = the number of bins desired to stratify a numeric stratification
variable

apparent = enables the option of an additional resample where the
analysis and assessment data sets are the same as the original data set. This
can be required for some types of analysis of the bootstrap results.

48

> (boot_splits <- bootstraps(math_train))

Bootstrap sampling

A tibble: 25 x 2

splits id

<list> <chr>

1 <split [142.1K/52.1K]> Bootstrap01

2 <split [142.1K/52.2K]> Bootstrap02

3 <split [142.1K/52.2K]> Bootstrap03

4 <split [142.1K/52.4K]> Bootstrap04

5 <split [142.1K/52.3K]> Bootstrap05

6 <split [142.1K/52.2K]> Bootstrap06

7 <split [142.1K/52.2K]> Bootstrap07

8 <split [142.1K/52.5K]> Bootstrap08

9 <split [142.1K/52.3K]> Bootstrap09

10 <split [142.1K/52.4K]> Bootstrap10

... with 15 more rows

49

bootstraps()

nrow(math_train)

[1] 142070

boot_splits$splits[[1]]
<Analysis/Assess/Total>
<142070/52415/142070>

boot_splits$splits[[12]]

<142070/52447/142070>

boot_splits$splits[[25]]

<142070/52149/142070> 50

bootstraps()

Results

• B01
• We fit our model on the B01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (loss functions)

• We repeat this process until we've predicted all B assessment sets

• The final performance is the average performance measure across
the B sets

51

Leave-one-out (LOO) cross-validation

• Uses one data point in the original set as the assessment data and all
other data points as the analysis set

• A LOO resampling set has as many resamples as rows in the original
data set

• LOO is computationally excessive unless you have extremely small
sample

• Generally may not have good statistical properties

52

> (loo_splits <- loo_cv(sample_n(math_train, 10000)))

Leave-one-out cross-validation
A tibble: 10,000 x 2

splits id
<named list> <chr>

1 <split [10K/1]> Resample1
2 <split [10K/1]> Resample2
3 <split [10K/1]> Resample3
4 <split [10K/1]> Resample4
5 <split [10K/1]> Resample5
6 <split [10K/1]> Resample6
7 <split [10K/1]> Resample7
8 <split [10K/1]> Resample8
9 <split [10K/1]> Resample9

10 <split [10K/1]> Resample10
... with 9,990 more rows

53

loo_cv()

> loo_splits$splits[[1]]

<Analysis/Assess/Total>

<9999/1/10000>

> loo_splits$splits[[12]]

<Analysis/Assess/Total>

<9999/1/10000>

> loo_splits$splits[[101]]

<Analysis/Assess/Total>

<9999/1/10000>

Quick recap

54

Data

Training
set

Test
set

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)

Data

Training
set

Test
set

N = 1,000

n = 750 n = 250

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)

Resampling Training
setn = 750

58

Training
set

…
Resample 01 Resample 02 Resample 10

n = 750

10-fold CV

n = 750 n = 750 n = 750

math_splits <- vfold_cv(math_train)

59

Training
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 10

n = 750

n = 750 n = 750 n = 750

10-fold CV so 1/10th of Resample goes to each assessment set
to get unique assessment sets across 10 resamples

60

Training
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 10

n = 750

n = 750 n = 750 n = 750

n = 75 n = 75 n = 75n = 675 n = 675 n = 675

90% 10%

vfold_cv()

math_splits$splits[[1]] %>%

analysis()

math_splits$splits[[1]] %>%

assessment()

61

Monte Carlo Cross-Validation

• For each split, a random sample (without replacement) is taken with a
specified proportion going into the analysis set and the rest going to
the assessment set

• As opposed to k-fold CV, MC CV produces resamples that are likely to
contain overlap

62

63

Training
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 25

n = 750

n = 750 n = 750 n = 750

mc_splits <- mc_cv(math_train,

prop = .75, #default

times = 25) #default

n = 188 n = 188 n = 188n = 562 n = 562 n = 562

bootstrapping

• A bootstrap sample is a simple random sample that is the same size
as the training set where the data are sampled with replacement
• So after a row is selected for inclusion in the assessment, it’s still available for

further selection

• Each bootstrap sample is likely to contain duplicate values
• Analysis set

• On average, 63.21% of the original sample ends up in a bootstrap sample

• Assessment set
• Those rows not selected in a bootstrap sample are considered out-of-bag (OOB)

64

65

Training
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 25

n = 750

n = 750 n = 750 n = 750

mc_splits <- bootstraps(math_train,

times = 25) #default

n = ≈36% n = ≈36% n = ≈36%n = 750 n = 750 n = 750

Results

• Fold01
• We fit our model on the Fold01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (objective functions)

• We repeat this process until we've predicted all k assessment sets

• The final performance is the average performance measure across
the k folds

66

Resampling considerations

• Small sample size: repeated 10-fold CV
• bias-variance properties are good

• low computational cost

• Large sample size: 10-fold CV
• less difference between methods

• computationally efficient

67

Next time

• Lab 1

• Readings

68

Lab 1

69

Resampling notes

• k-fold CV more variability compared to other resampling methods
(bootstrapping)
• Repeating k-fold CV can improve the accuracy of the estimates while maintaining

small bias (Molarino, 2005; Kim, 2009)
• Helps reduce variability between folds10-fold CV repeated 5 times = 50

models/performance measures
• Particularly useful for smaller data sets
• For large training sets, variance and bias issues are less of a concern

• Bootstrap tends to have less variability in the error measure compared to k-
fold CV

• But because of replacement, bootstrap has more bias (similar to k = 2)
• This is problematic when the training set is small, and less so as the sample increases

(n ≥ 1,000)

70

