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Data Specialist at PSI

• The Data Science Specialist works with PSI scientists on various federal grants and sponsored projects, 
including a large-scale, multi-site center grant (P50) and the RADx-UP grant to scale-up COVID-19 testing to 
the Latinx community.

• The incumbent interfaces with and provides support across projects to facilitate data harmonization of 
projects involving multiple sources of data and means of data collection (observation, biospecimen, imaging, 
Qualtrics, REDCap, etc.).

• Support for other projects includes acting as a resource to personnel accessing data; coordinating with 
methodologists; running routine descriptive analysis; cleaning, formatting, and preparing files for datasets; 
and conducting light analysis, such as descriptive analysis and frequencies.

• Although remote work is possible at the start of this position, the ideal candidate would eventually be able 
to work on-site.

https://careers.uoregon.edu/en-us/job/525722/pro-tem-research-assistant-data-science-specialist
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Agenda

• Data splitting and why it matters

• Introduce resampling methods
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Data Splitting
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Data splitting

• The goal of machine learning is to predict results based on new 
(unseen) data

• “The best way to measure a model's performance at predicting new 
data is to predict new data.” – paraphrasing/quoting multiple experts

• The simplest way to do this is to split our data into two parts: 
• Training set 
• Test set

• We then fit a model to the training data and predict the results of the 
test set
• fit -> training
• predict -> test

5



Data splitting

• We can do anything we want to the training set
• train our algorithms, tune hyperparameters, compare models, and all of the 

other activities required to choose a final model

• We do nothing with the test set until we have finalized our model 
using from the training set
• Data leakage is using ANY part of the test set in our training set

• Using the test set during our modeling process

• Pre-processing or feature engineering the full data (training and test sets together)

• Time series design, when the outcome of one series is used in the prediction of the next
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{rsample}

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)

• These three functions are meant to be used in conjunction

• A good rule is to make these the first lines of your ML project code
• some differ
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initial_split() help documentation
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Let’s take a look at initial_split()

math <- read_csv(here::here("data", "train.csv"))

set.seed(3000)

(math_split <- initial_split(math))

<Analysis/Assess/Total>

<142070/47356/189426>

math_split %>% training() %>% nrow() / nrow(math)

[1] 0.7500026

names(math_split)

[1] "data"   "in_id"  "out_id" "id"

class(math_split)

[1] "rsplit"   "mc_split"
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Additional arguments
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The default is simple random assignment, with:
- 75% to the training set, and 
- 25% to the test set

A general guideline is somewhere between 60%/40% & 80%/20%. 

- Spending too much in training (e.g., > 80%) may mean poor 
predictive performance. It may fit the training data very well, 
but is not generalizable (overfitting).

- Spending too much in testing (e.g., > 40%) may mean poor 
assessment of model parameters (underfitting).

- If you have a lot of data, you may see little predictive benefit of 
using the entire data, but an increase in computational time.

- If you have more features/predictors than rows, you may need 
a larger sample size to identify consistent signals in the 
features.

split_data <- initial_split(ames, prop = .70)



Let’s take a look at prop

set.seed(3000)

(math_split70 <- initial_split(math, prop = .70))

<Analysis/Assess/Total>

<132599/56827/189426>

math_split70 %>% training() %>% nrow() / nrow(math)

[1] 0.7000042
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Additional arguments
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As opposed to simple random assignment, you can use stratified sampling to 
ensure the training and test sets have similar outcome (Y) 
distributions/proportions (equal to that of the full data set). Helps ensure a 
balanced representation of the response distribution in both the training and test 
sets.

Especially useful if:
- the continuous outcome is not normally distributed (skewed)

- stratified sampling will segment outcome into quantiles and randomly 
sample from each

- the categorical outcome has substantial unbalanced classes (e.g., 6% HS 
dropout, 94% graduate)
- this will matter less with large data

split_data <- initial_split(ames, strata = Sales_Price)



Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome
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math_split %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n    percent

A  5885 0.04142324
B  3148 0.02215809
H 34537 0.24309847
I  1848 0.01300767
M  8930 0.06285634
P  1077 0.00758077
W 86645 0.60987541

math_split %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1810 0.038221134
B  1002 0.021158882
H 11345 0.239568376
I   594 0.012543289
M  2965 0.062610862
P   353 0.007454177
W 29287 0.618443281



Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome
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math_split %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n    percent

A  5885 0.04142324
B  3148 0.02215809
H 34537 0.24309847
I  1848 0.01300767
M  8930 0.06285634
P  1077 0.00758077
W 86645 0.60987541

math_split %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1810 0.038221134
B  1002 0.021158882
H 11345 0.239568376
I   594 0.012543289
M  2965 0.062610862
P   353 0.007454177
W 29287 0.618443281



Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome
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math_split %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n    percent

A  5885 0.04142324
B  3148 0.02215809
H 34537 0.24309847
I  1848 0.01300767
M  8930 0.06285634
P  1077 0.00758077
W 86645 0.60987541

math_split %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1810 0.038221134
B  1002 0.021158882
H 11345 0.239568376
I   594 0.012543289
M  2965 0.062610862
P   353 0.007454177
W 29287 0.618443281

math_split_strat <- initial_split(math, strata = ethnic_cd)

math_split_strat %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  5718 0.040247765
B  3114 0.021918772
H 34465 0.242591680
I  1841 0.012958401
M  8910 0.062715563
P  1067 0.007510382
W 86955 0.612057436

math_split_strat %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1977 0.041747614
B  1036 0.021876848
H 11417 0.241088774
I   601 0.012691106
M  2985 0.063033195
P   363 0.007665343
W 28977 0.611897120



Let’s take a look at strata
• Here we’re stratifying by a predictor and not the outcome
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math_split %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n    percent

A  5885 0.04142324
B  3148 0.02215809
H 34537 0.24309847
I  1848 0.01300767
M  8930 0.06285634
P  1077 0.00758077
W 86645 0.60987541

math_split %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1810 0.038221134
B  1002 0.021158882
H 11345 0.239568376
I   594 0.012543289
M  2965 0.062610862
P   353 0.007454177
W 29287 0.618443281

math_split_strat <- initial_split(math, strata = ethnic_cd)

math_split_strat %>% 
training() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  5718 0.040247765
B  3114 0.021918772
H 34465 0.242591680
I  1841 0.012958401
M  8910 0.062715563
P  1067 0.007510382
W 86955 0.612057436

math_split_strat %>% 
testing() %>% 
janitor::tabyl(ethnic_cd)
ethnic_cd n     percent

A  1977 0.041747614
B  1036 0.021876848
H 11417 0.241088774
I   601 0.012691106
M  2985 0.063033195
P   363 0.007665343
W 28977 0.611897120



Resampling
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We split – now what?

• Again, we NEVER use the test set until we have a “final model”

• And “the best way to measure a model's performance at predicting 
new data is to predict new data”

• So how do we measure model performance during the training 
phase? What new data do we predict?

• Just re-predicting the training set is not ideal
• biases results - may well predict training set but won’t generalize to new data

• no measure of variance if we only have one measure of performance (based 
on predicting the training set)

• We resample training set
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Data

Training 
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Resampling Training 
set



Resampling

22

Training 
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k

Training:Test::Analysis:Assessment
-OR-

Analysis functions like the Training set
Assessment functions like the Test set



Resampling
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Data

Training 
set

Test
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k



(Confusing) Terms
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Data

Training 
set

Test
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample k

aka
holdout set

aka
validation 
test
evaluation
holdout

aka
training



Common Resampling Methods

• k-fold cross-validation
• Probably the most common resampling method for model evaluation and 

model selection in applied ML

• Monte Carlo cross-validation

• Bootstrapping

• Leave one out cross validation (LOOCV)

• Others (not discussed here)
• Rolling origin forecasting – for time series data
• 632 and 632+ methods
• Maximum dissimilarity sampling
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k-fold cross-validation (k-fold CV)

• We randomly split the training data into k distinct samples ("folds") of 
(approximately) equal size

10-fold CV

• k = 10 

• Within each fold, a random 10% (1/10) of training data are sampled 
for the assessment set
• The 10% assessment sample is completely different for each fold
• Each observation (row) serves in one and only one assessment sample

• The remaining 90% of the training data serve as the analysis set in the 
fold
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10-fold CV
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Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis



k-fold CV

5-fold CV

• k = 5

• Within each fold, a random 20% (1/5) of training data are sampled for 
the assessment set
• The 20% assessment sample is completely different for each fold

• Each observation (row) serves in one and only one assessment sample

• The remaining 80% of the training data serve as the analysis set in the 
fold
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5-fold CV
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Fold01 Fold02 Fold03 Fold04 Fold05

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis



Results 

• Fold01
• We fit our model on the Fold01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (objective functions) 

• We repeat this process until we've predicted all k assessment sets

• The final performance is the aggregate (average) performance 
measure across the k folds
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Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01

02

03

04

05

06

07

08

09

10

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

performance
measure

RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE RMSE

Average RMSE

(variance)



k-fold CV suggestions

• Larger values of k:
• produce less bias (because the difference between a fold and the training set 

decreases)

• more computationally intensive

• 10 folds is a good rule-of-thumb
• Leave-one-out is the most extreme resampling technique

• Use n - 1 to predict each row

• 10-fold CV performed comparably to LOOCV (Molarino, 2005)
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k-fold CV suggestions

• Has more variability compared to other resampling methods (bootstrapping)

• Repeating k-fold CV can improve the accuracy of the estimates while 
maintaining small bias (Molarino, 2005; Kim, 2009)
• Helps reduce variability between folds; gives a more complete estimate of the overall 

between-fold variability (i.e., the variance distribution)
• 10-fold CV repeated 5 times = 50 models/performance measures

• Particularly useful for smaller data sets

• For large training sets, variance and bias issues are less of a concern

• Repeated CV is not equivalent to increasing the number of folds (e.g., 50-fold CV)
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vfold_cv()

data = your training set from training()

v = number of folds (default = 10)

repeats = number of repeats (default = 1)

strata = variable to conduct stratified sampling to create the folds 

breaks = the number of bins desired to stratify a numeric 
stratification variable
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vfold_cv()

set.seed(3000)

(cv_splits <- vfold_cv(math_train))

#  10-fold cross-validation

# A tibble: 10 x 2

splits                 id

<named list>           <chr>

1 <split [127.9K/14.2K]> Fold01

2 <split [127.9K/14.2K]> Fold02

3 <split [127.9K/14.2K]> Fold03

4 <split [127.9K/14.2K]> Fold04

5 <split [127.9K/14.2K]> Fold05

6 <split [127.9K/14.2K]> Fold06

7 <split [127.9K/14.2K]> Fold07

8 <split [127.9K/14.2K]> Fold08

9 <split [127.9K/14.2K]> Fold09

10 <split [127.9K/14.2K]> Fold10
35



vfold_cv()

cv_splits$splits[[1]]

<Analysis/Assess/Total>

<127863/14207/142070>

cv_splits$splits[[1]] %>% 

analysis() %>%

nrow()

[1] 127863

cv_splits$splits[[1]] %>% 

assessment() %>%

nrow()

[1] 14207 36



cv_splits$splits[[1]]

<Analysis/Assess/Total>

<127863/14207/142070>

cv_splits$splits[[1]] %>% 

assessment()

# A tibble: 14,207 x 40

id gndr ethnic_cd attnd_dist_inst~ attnd_schl_inst~ enrl_grd calc_admn_cd

<dbl> <chr> <chr>                <dbl>            <dbl>    <dbl> <lgl>

1    37 F     W                     2042              387        8 NA

2    47 M     M 2142             1330        8 NA

3    72 M     W                     2057              480        7 NA

4    96 F     A                     2041              380        8 NA

5   109 M     W                     2090              593        7 NA

6   146 M     W                     1926               97        7 NA

7   175 M     W                     2082              528        8 NA

8   189 F     W                     2087             4555        7 NA

9   196 M     W                     2082              506        8 NA

10   206 M     B                     1970              224        7 NA

# ... with 14,197 more rows, and 33 more variables:
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Monte Carlo Cross-Validation

• For each split, a random sample (without replacement) is taken with a 
specified proportion going into the analysis set and the rest going to 
the assessment set

• The splitting procedure is conducted a specified number times 
• The number of splits must be large enough have adequate precision

• Like k-fold CV, a model is created on the analysis set and the 
assessment set is used to evaluate the model, and the average of the  
results across resamples are used to estimate future performance

• As opposed to k-fold CV, MC CV produces resamples that are likely to 
contain overlap
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10-fold CV
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Fold01 Fold02 Fold03 Fold04 Fold05 Fold06 Fold07 Fold09 Fold09 Fold10

01
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04

05
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Analysis



Monte Carlo CV (10 times)
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Resample01 Resampl02 Resample03 Resample04 Resample05 Resample06 Resample07 Resample08 Resample09 Resample10

01

02

03

04

05

06

07

08

09

10

Assessment

Analysis



mc_cv()

data = your training set

prop = proportion going to the analysis set (default = .75)

times = number of times to repeat the sample (default = 25)

strata = variable to conduct stratified sampling to create the folds 

breaks = the number of bins desired to stratify a numeric 
stratification variable (default = 4)
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mc_cv()

(mc_splits <- mc_cv(math_train))

# # Monte Carlo cross-validation (0.75/0.25) with 25 resamples

# A tibble: 25 x 2

splits                 id

<list>                 <chr>

1 <split [106.6K/35.5K]> Resample01

2 <split [106.6K/35.5K]> Resample02

3 <split [106.6K/35.5K]> Resample03

4 <split [106.6K/35.5K]> Resample04

5 <split [106.6K/35.5K]> Resample05

6 <split [106.6K/35.5K]> Resample06

7 <split [106.6K/35.5K]> Resample07

8 <split [106.6K/35.5K]> Resample08

9 <split [106.6K/35.5K]> Resample09

10 <split [106.6K/35.5K]> Resample10

# ... with 15 more rows
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mc_cv()

nrow(math_train)

[1] 142070

mc_splits$splits[[1]]

<106553/35517/142070>

mc_splits$splits[[12]]

<106553/35517/142070>

mc_splits$splits[[25]]

<106553/35517/142070>

analysis(mc_splits$splits[[1]]) %>% nrow() / nrow(mc_splits$splits[[1]]$data)

[1] 0.7500035
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mc_cv()

nrow(math_train)

[1] 142070

mc_splits$splits[[1]]

<106553/35517/142070>

mc_splits$splits[[12]]

<106553/35517/142070>

mc_splits$splits[[25]]

<106553/35517/142070>

analysis(mc_splits$splits[[1]]) %>% nrow() / nrow(mc_splits$splits[[1]]$data)

[1] 0.7500035
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bootstrapping

• A bootstrap sample is a simple random sample that is the same size 
as the training set where the data are sampled with replacement
• So after a row is selected for inclusion in the subset, it’s still available for 

further selection

• Each bootstrap sample is likely to contain duplicate values
• Analysis set

• On average, 63.21% of the original sample ends up in a bootstrap sample

• Assessment set
• Those rows not selected in a bootstrap sample are considered out-of-bag (OOB)
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B01 B02 B03 B04 B05 B06 B07 B09 B09 B10

01

02

03

04

05

06

07

08

09

10

Times sampled: 0 1 2 3

Assessment
Analysis



Bootstrap vs K-fold CV

• K-fold CV tends to have less bias and more variance

• bootstrapping tends to have more bias but less variance

• bootstrap has more bias because of replacement (similar to k = 2)
• This is problematic when the training set is small, and less so as the sample 

increases (n ≥ 1,000)
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bootstraps()

data = your training set

times = number of bootstrap samples (default = 25)

strata = variable to conduct stratified sampling to create the folds 

breaks = the number of bins desired to stratify a numeric stratification 
variable

apparent = enables the option of an additional resample where the 
analysis and assessment data sets are the same as the original data set. This 
can be required for some types of analysis of the bootstrap results. 
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> (boot_splits <- bootstraps(math_train))

# Bootstrap sampling

# A tibble: 25 x 2

splits                 id

<list>                 <chr>

1 <split [142.1K/52.1K]> Bootstrap01

2 <split [142.1K/52.2K]> Bootstrap02

3 <split [142.1K/52.2K]> Bootstrap03

4 <split [142.1K/52.4K]> Bootstrap04

5 <split [142.1K/52.3K]> Bootstrap05

6 <split [142.1K/52.2K]> Bootstrap06

7 <split [142.1K/52.2K]> Bootstrap07

8 <split [142.1K/52.5K]> Bootstrap08

9 <split [142.1K/52.3K]> Bootstrap09

10 <split [142.1K/52.4K]> Bootstrap10

# ... with 15 more rows

49
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nrow(math_train)

[1] 142070

boot_splits$splits[[1]]
<Analysis/Assess/Total>
<142070/52415/142070>

boot_splits$splits[[12]]

<142070/52447/142070>

boot_splits$splits[[25]]

<142070/52149/142070> 50

bootstraps()



Results 

• B01
• We fit our model on the B01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (loss functions) 

• We repeat this process until we've predicted all B assessment sets

• The final performance is the average performance measure across 
the B sets
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Leave-one-out (LOO) cross-validation

• Uses one data point in the original set as the assessment data and all 
other data points as the analysis set

• A LOO resampling set has as many resamples as rows in the original 
data set

• LOO is computationally excessive unless you have extremely small 
sample

• Generally may not have good statistical properties
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> (loo_splits <- loo_cv(sample_n(math_train, 10000)))

# Leave-one-out cross-validation
# A tibble: 10,000 x 2

splits          id
<named list>    <chr>

1 <split [10K/1]> Resample1
2 <split [10K/1]> Resample2
3 <split [10K/1]> Resample3
4 <split [10K/1]> Resample4
5 <split [10K/1]> Resample5
6 <split [10K/1]> Resample6
7 <split [10K/1]> Resample7
8 <split [10K/1]> Resample8
9 <split [10K/1]> Resample9

10 <split [10K/1]> Resample10
# ... with 9,990 more rows

53

loo_cv()

> loo_splits$splits[[1]]

<Analysis/Assess/Total>

<9999/1/10000>

> loo_splits$splits[[12]]

<Analysis/Assess/Total>

<9999/1/10000>

> loo_splits$splits[[101]]

<Analysis/Assess/Total>

<9999/1/10000>



Quick recap
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Data

Training 
set

Test
set

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)



Data

Training 
set

Test
set

N = 1,000

n = 750 n = 250

math_split <- initial_split(math)

math_train <- training(math_split)

math_test <- testing(math_split)



Resampling Training 
setn = 750



58

Training 
set

…
Resample 01 Resample 02 Resample 10

n = 750

10-fold CV

n = 750 n = 750 n = 750

math_splits <- vfold_cv(math_train)
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Training 
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 10

n = 750

n = 750 n = 750 n = 750

10-fold CV so 1/10th of Resample goes to each assessment set 
to get unique assessment sets across 10 resamples
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Training 
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 10

n = 750

n = 750 n = 750 n = 750

n = 75 n = 75 n = 75n = 675 n = 675 n = 675

90% 10%



vfold_cv()

math_splits$splits[[1]] %>% 

analysis() 

math_splits$splits[[1]] %>% 

assessment()
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Monte Carlo Cross-Validation

• For each split, a random sample (without replacement) is taken with a 
specified proportion going into the analysis set and the rest going to 
the assessment set

• As opposed to k-fold CV, MC CV produces resamples that are likely to 
contain overlap
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Training 
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 25

n = 750

n = 750 n = 750 n = 750

mc_splits <- mc_cv(math_train,

prop = .75, #default

times = 25) #default

n = 188 n = 188 n = 188n = 562 n = 562 n = 562



bootstrapping

• A bootstrap sample is a simple random sample that is the same size 
as the training set where the data are sampled with replacement
• So after a row is selected for inclusion in the assessment, it’s still available for 

further selection

• Each bootstrap sample is likely to contain duplicate values
• Analysis set

• On average, 63.21% of the original sample ends up in a bootstrap sample

• Assessment set
• Those rows not selected in a bootstrap sample are considered out-of-bag (OOB)
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Training 
set

Analysis AssessmentAnalysis Assessment Analysis Assessment

…
Resample 01 Resample 02 Resample 25

n = 750

n = 750 n = 750 n = 750

mc_splits <- bootstraps(math_train,

times = 25) #default

n = ≈36% n = ≈36% n = ≈36%n = 750 n = 750 n = 750



Results 

• Fold01
• We fit our model on the Fold01 analysis set (leaving out the assessment set)

• We apply our resulting model parameters to predict the assessment set

• We get our performance measures (objective functions) 

• We repeat this process until we've predicted all k assessment sets

• The final performance is the average performance measure across 
the k folds
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Resampling considerations

• Small sample size: repeated 10-fold CV
• bias-variance properties are good

• low computational cost

• Large sample size: 10-fold CV
• less difference between methods

• computationally efficient
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Next time

• Lab 1

• Readings
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Lab 1
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Resampling notes

• k-fold CV more variability compared to other resampling methods 
(bootstrapping)
• Repeating k-fold CV can improve the accuracy of the estimates while maintaining 

small bias (Molarino, 2005; Kim, 2009)
• Helps reduce variability between folds10-fold CV repeated 5 times = 50 

models/performance measures
• Particularly useful for smaller data sets
• For large training sets, variance and bias issues are less of a concern

• Bootstrap tends to have less variability in the error measure compared to k-
fold CV

• But because of replacement, bootstrap has more bias (similar to k = 2)
• This is problematic when the training set is small, and less so as the sample increases 

(n ≥ 1,000)
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