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An Introduction to the Course
Week 1, Class 2
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Agenda

• Introductions

• About the course

• Syllabus

• Kaggle
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About Me

• BA: UC Santa Barbara
• PhD, School Psychology: University of Maryland
• Behavioral Research & Teaching (BRT) since 2009
• Research Associate Professor

• Research
• Applied statistical methods to measure and monitor student growth
• Inform the applied research methodologies used by researchers 
• Developing and improving systems that support data-based decision making using advanced 

technologies to influence teachers’ instructional practices and increase student achievement

• CORE and CORE II
• Teaching

• EDLD 651 – Introduction to Data Science with R
• EDLD 654 – this one!
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https://jnese.github.io/core-blog/
https://ies.ed.gov/funding/grantsearch/details.asp?ID=3427
https://uo-datasci-specialization.github.io/c4-ml-fall-2020/index.html
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About You

• Please introduce yourself 
• Name and program/year of study 

• How are you doing?
• Tell me whatever you’d like the class to know
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https://vas3k.com/blog/machine_learning/



Variable 
Selection

Bias-Variance 
Tradeoff

Inference vs. 
Prediction ML 

Ethics

Feature 
Engineering
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https://vas3k.com/blog/machine_learning/



ML Modeling Process
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Housekeeping

• Course website: https://uo-datasci-specialization.github.io/c4-ml-fall-2020/index.html
• Syllabus: https://uo-datasci-specialization.github.io/c4-ml-fall-2020/site-syllabus.html

• Schedule: https://uo-datasci-specialization.github.io/c4-ml-fall-2020/schedule.html

• Assignments: https://uo-datasci-specialization.github.io/c4-ml-fall-2020/assignments.html

• Course github: https://github.com/uo-datasci-specialization/c4-ml-fall-2020

• Course Kaggle: https://www.kaggle.com/c/edld-654-fall-2020/overview
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https://uo-datasci-specialization.github.io/c4-ml-fall-2020/index.html
https://uo-datasci-specialization.github.io/c4-ml-fall-2020/site-syllabus.html
https://uo-datasci-specialization.github.io/c4-ml-fall-2020/schedule.html
https://uo-datasci-specialization.github.io/c4-ml-fall-2020/assignments.html
https://github.com/uo-datasci-specialization/c4-ml-fall-2020
https://www.kaggle.com/c/edld-654-fall-2020/overview


How the pandemic affects 
this course 
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Remote instruction

• In-person format
• Present new content
• Lab applying learned content

• Remote format
• Present new content in a Zoom meeting

• two instructors to help field questions
• Zoom will be recorded, and posted to Canvas to view at a later time if need be

• Labs held via zoom
• two instructors available to help and answer questions
• screen shares
• breakout rooms to facilitate individual help as necessary
• attendance is encouraged
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Practical changes

• Expectation is that you still engage with each week’s materials

• Communication
• Please be open with your communication regarding unexpected interruptions 

or uncertainties so that we can help
• illness

• caring for family

• technology

• Accessibility
• students with disabilities or medical conditions that encounter barriers with 

remote instruction should contact the Accessible Education Center as soon as 
possible so that appropriate accommodations can be determined
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http://aec.uoregon.edu/


How we can help each other

• Patience

• Grace

• Empathy

• Understanding

• Open communication
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About the course
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This class

• This class is
• an introduction to applied machine learning techniques

• experimental

• utilizing R

• delivered remotely

• This class is not
• all encompassing

• perfectly complete (the field and software change)

• an online course
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Why R?

• R has cutting edge ML models 
• Some ML developers use R as their primary computing environment and their 

work often results in R packages

• R and R packages are built by people who do data analysis 

• It is easy to link to other applications
• You can implement python, C, C++, tensorflow, keras, stan, or Weka without 

leaving R

• You already know R!
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Why not R?

• R is a data analysis language, and is not C or Java
• If a high-performance deployment is required, R can be a prototyping 

language 

• R is mostly memory-bound
• But there are plenty of exceptions to this 

• The interfacing functions have been inconsistent
• There are two methods for specifying what a model 

• formula (y ~ x)

• x = x , y = y

• Nearly all model functions auto-generate dummy variables 

• Some packages have an argument for resampling
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Syntax for computing predicted class probabilities

Function Package Code

lda MASS predict(obj)

glm stats predict(obj, type = "response")

gbm gbm predict(obj, type = "response", n.trees)

mda mda predict(obj, type = "posterior")

rpart rpart predict(obj, type = "prob")

Weka RWeka predict(obj, type = "probability")

logitboost LogitBoost predict(obj, type = "raw", nIter)

pamr.train pamr pamr.predict(obj, type = "posterior", threshold)

Kuhn (2020) 20
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Why tidymodels?

• Consistent interface functions and language
• Irrespective of modeling package 

• This makes your workflow consistent across models and projects

• RStudio generally makes good products
• You are already familiar with the tidyverse

• tidymodels has the support of a respected development team

• Cutting edge!
• taking the place of the well-known and widely-used carat package
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Why not tidymodels?

• Cutting edge!
• currently in development

• stable/durable code?

• documentation non-existent is growing!
• Tidymodels website (launched spring 2020)

• Tidy Modeling with R (released on 2020-9-22)

• makes it challenging both to learn and to teach

• Not the tidyverse
• but it is tackling something much larger and more complex

• all the packages

26

https://www.tidymodels.org/
https://www.tmwr.org/
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tidymodels

• This is a lot of packages
• Some of these packages work in the background

• Others perform specific tasks, small, important tasks in the modeling process

• Can be overwhelming, but 
• we will not be calling all of these directly

• you will learn how each of the major packages fit into your ML workflow
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Some Resources

• Tidy Modeling with R (just released!)

• Tidymodels website (recently released!)

• Learning to Teach Machines to Learn (Allison Hill)

• ML Learning Resources (Bradley Boehmke)

• Intro to Tidy ML materials (Allison Hill)

• Applied ML materials (Max Kuhn)

• Julia Silge blog
• screencasts and blogs using {tidymodels} and #TidyTuesday data

• Your peers

• Your instructors

• RStudio Community 
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https://www.tmwr.org/
https://www.tidymodels.org/
https://alison.rbind.io/post/2019-12-23-learning-to-teach-machines-to-learn/
https://github.com/bradleyboehmke/data-science-learning-resources/blob/master/README.md
https://conf20-intro-ml.netlify.com/materials/
https://rstudio-conf-2020.github.io/applied-ml/README.html
https://juliasilge.com/blog/
https://github.com/rfordatascience/tidytuesday
https://community.rstudio.com/


Syllabus
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Course learning objectives

• Describe the framework of machine learning (i.e. supervised vs. unsupervised 
learning) and how it differs from standard inferential statistics

• Discuss the bias-variance tradeoff in supervised learning and apply the concept in 
making decisions about model selection

• Construct various supervised learning models, including linear regression (for 
prediction rather than inference), penalized regression (ridge/lasso), various 
decision tree models (including bagged and boosted trees, and random forests), 
and k-nearest neighbor models

• Measure and contrast the performance of various models

• Construct models for both classification- and regression-based problems

• Conduct feature engineering, including dimension reduction, to increase model 
performance (and quantify the degree to which model performance changed)
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Required Texts (free)
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https://bradleyboehmke.github.io/HOML/


Books not required (but possibly helpful)
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Books not required (but possibly helpful)
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Weekly Schedule

• Class time M & W – 12:15-1:45

• Readings – do before class

• New content presented via Zoom
• attend to ask questions

• recordings will be posted to Canvas

• Labs conducted via Zoom
• to provide you with practice and time with the instructors to help you puzzle 

through your problems

• what you do not complete in Zoom labs must be completed on your own time
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Assignments (200 points total)

• Data Quiz (5 points)

• Labs (100 points)
1) Resampling (20 points)
2) Penalized Regression (20 points)
3) Feature Engineering (20 points)
4) K Nearest Neighbors (20 points)
5) Ensemble Methods (20 points)

• Final Project (95 points)
• Preliminary fit 1 (10 points)
• Preliminary fit 2 (10 points)
• Blog post (75 points)

• Data description (20 points)
• Model fit description (25 points)
• Model fits (20 points)
• Data visualization (5 points)
• Reproducibility (5 points)
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Labs

• Scored on a “best honest effort” basis
• generally, zero or full credit 

• If you find yourself stuck and unable to proceed, please contact the 
instructors for help rather than submitting incomplete work
• Contacting the instructor is part of the “best honest effort” and can result in 

full credit for an assignment even if the work is not fully complete. 

• If the assignment is not complete, and the student has not 
contacted the instructor for help, it is likely to result is a partial 
credit score or a zero. 

• Labs submitted late will be docked by 30% (6 points)
• Labs are due a week after they are assigned, before class starts
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Final Project

• We will be using the kaggle platform to host a local competition
• Work as a team to build, tune, evaluate a predictive model based on the 

training data
• Make predictions on the test data that has all the same features (variables) 

except the outcome
• Upload predictions to kaggle, which will provide you with an estimate of 

your model performance on a portion of the test data (but not the full test 
data)

• At the end of the course, each team’s most performant model will be 
evaluated against the full test data
• this final test regularly leads to changes in the leaderboard ranking for real kaggle

competitions
• the team with the best model will be awarded five points extra credit.

• Link to outside data to help increase the performance of your model (e.g., 
NCES) 39

https://www.kaggle.com/
https://www.kaggle.com/c/edld-654-fall-2020/overview
https://nces.ed.gov/


Final Project – Preliminary fits

• At Week 6 and Week 8 each team will be required to submit 
preliminary predictions to kaggle

• You may submit predictions at any time, but you must submit your 
first predictions by Week 6, and predictions from a new model by 
Week 8

• A quantitative indicator of prediction accuracy will automatically be 
provided

• Submissions will be scored on an “all or nothing” basis
• If your group provides a set of predictions, you will all receive credit, 

regardless of the performance of the model
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Final Project

Group project, 3 to 4 people

Blog post (or a series of blog posts)

• Data description
• Describe core features of the data, any additional data you joined in and why, basic 

descriptives, feature engineering, and data splitting

• Model fit description
• At least three models must be fit to the data. Describe each model, hyperparameters, 

assumptions, and a description of what the model is doing and why it is appropriate

• Model fits
• Describe model fitting procedure(s) and the results of your model evaluation. Compare and 

contrast the different fits, including a discussion of model performance

• Data visualization
• Include at least two plots (you may include more) to help communicate your findings

• Reproducibility
• All code should be housed in a GitHub repository and be fully reproducible
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Final Project – Dates

• Week 6a (11/2): Preliminary Fit 1

• Week 8b (11/18): Preliminary Fit 2

• Week 11 (12/7): Final Fits, Blog post (final product) due
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Final Project – Scoring Rubric

Criteria Points possible

Preliminary Fit 1 10

Preliminary Fit 2 10

Blog Post(s)

Description of the data 20

Description of the model fits 25

Model fits 20

Data visualization 5

Reproducibility 5

Total 95
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Grading

Lower 
percent

Lower point 
range Grade

Upper point 
range

Upper 
percent

97 (194 pts) A+

93 (186 pts) A (194 pts) 97

90 (180 pts) A- (186 pts) 93

87 (174 pts) B+ (180 pts) 90

83 (166 pts) B (174 pts) 87

80 (160 pts) B- (166 pts) 83

77 (154 pts) C+ (160 pts) 80

73 (146 pts) C (154 pts) 77

70 (140 pts) C- (146 pts) 73

F (140 pts) 70 44



Kaggle
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